30 research outputs found

    Cosmids from the Vollmer-Yanofsky library identified with a chromosome VII probe.

    Get PDF
    In microorganisms, genes can often be cloned directly by complementation of mutants with a genomic library

    CBM1, a Neurospora crassa genomic cosmid library in pAC3 and its use for walking on the right arm of linkage group VII

    Get PDF
    Gene cloning in Neurospora crassa is often achieved by mutant complementation. However, the cloning strategy sometimes requires the isolation of a specific genomic region (by chromosome walking) before transformation of N. crassa. This is the case, for example, if the gene to be isolated has a non-selectable phenotype. Here we specifically describe the construction of the cosmid vector, pAC3, which is designed for direct transformation of N. crassa, its utilization for the construction of a genomic library, and chromosome walking in the region of un-10 on linkage group VII

    Oncostatin M Protects Rod and Cone Photoreceptors and Promotes Regeneration of Cone Outer Segment in a Rat Model of Retinal Degeneration

    Get PDF
    Retinitis pigmentosa (RP) is a group of photoreceptor degenerative disorders that lead to loss of vision. Typically, rod photoreceptors degenerate first, resulting in loss of night and peripheral vision. Secondary cone degeneration eventually affects central vision, leading to total blindness. Previous studies have shown that photoreceptors could be protected from degeneration by exogenous neurotrophic factors, including ciliary neurotrophic factor (CNTF), a member of the IL-6 family of cytokines. Using a transgenic rat model of retinal degeneration (the S334-ter rat), we investigated the effects of Oncostatin M (OSM), another member of the IL-6 family of cytokines, on photoreceptor protection. We found that exogenous OSM protects both rod and cone photoreceptors. In addition, OSM promotes regeneration of cone outer segments in early stages of cone degeneration. Further investigation showed that OSM treatment induces STAT3 phosphorylation in Müller cells but not in photoreceptors, suggesting that OSM not directly acts on photoreceptors and that the protective effects of OSM on photoreceptors are mediated by Müller cells. These findings support the therapeutic strategy using members of IL-6 family of cytokines for retinal degenerative disorders. They also provide evidence that activation of the STAT3 pathway in Müller cells promotes photoreceptor survival. Our work highlights the importance of Müller cell-photoreceptor interaction in the retina, which may serve as a model of glia-neuron interaction in general

    Production and structural characterization of amino terminally histidine tagged human oncostatin M in E. coli.

    No full text
    Oncostatin M is a cytokine that acts as a growth regulator on a wide variety of cells and has diverse biological activities including acute phase protein induction, LDL receptor up-regulation and cell-specific gene expression. In order to gather information about the Onc M structure, we established a protocol for large scale production and single step purification of this functional cytokine from bacterial cells. The cDNA of human Onc M was cloned by RT-PCR from total RNA of PMA induced U937 cells. After the addition of a six histidine tag at the N-terminus, the coding region of mature Onc M was cloned in the pT7.7 expression vector. Histidine tagged Onc M was overexpressed in bacterial cells and purified to homogeneity in one step on a metal chelating column. We found that recombinant 6xHis-OncM remains fully active in a growth inhibition assay. Structural characterization of the purified protein was performed by electrospray mass spectrometry, automated Edman degradation and peptide mapping by high-pressure liquid chromatography/fast-atom-bombardment mass spectrometry. Thermal and pH stability dependence of Onc M was assessed by circular dichroism spectroscopy; the helical content is about 50%, in agreement with the four helix bundle fold postulated for cytokines that bind haematopoietic receptors of type I

    The receptor super-antagonist Sant7

    No full text
    Interleukin-6 (IL-6) plays a central role in the pathogenesis of multiple myeloma, acting both as a growth and a survival factor for myeloma cells. IL-6 has been recently shown to possess three topologically distinct receptor binding sites: site 1 for binding to the subunit specific chain IL-6R alpha and sites 2 and 3 for the interaction with two separate subunits of the signalling chain gp130. We have generated a set of IL-6 receptor antagonists carrying substitutions that abolish interaction with gp130 at either site 2 alone (site 2 antagonist) or at both sites 2 and 3 (site 2+3 antagonist). In addition, substitutions were introduced at site 1 that increased affinity for IL-6R alpha. When tested as growth inhibitors on a representative set of IL-6-dependent human myeloma cell lines (XG-1, XG-2, XG-4 and XG-6), although site 2 antagonists were effective on 3 out of 4 of the cell lines, only the site 2+3 antagonist Sant7 showed full antagonism on the entire spectrum of cells tested. Moreover, IL-6 receptor antagonists were also pro-apoptotic factors for myeloma cells. Their capacity to induce cell death was directly related to the impairment of binding to gp130 and to their ability to fully block intracellular signalling. In fact, the most potent inducer of apoptosis was again Sant7, which also counteracted the protective autocrine effect excercised by the endogenously produced IL-6. On the basis of these results we propose the super-antagonist Sant7 as a possible candidate for the immunotherapy of multiple myeloma
    corecore