112 research outputs found

    Resveratrol increases rate of apoptosis caused by purine analogues in malignant lymphocytes of chronic lymphocytic leukemia

    Get PDF
    In this study, we attempted to assess the interactions of resveratrol, a natural compound present in various plant species, with the purine analogues fludarabine and cladribine in terms of their effects on DNA damage and apoptosis in chronic lymphocytic leukemia (CLL) cells. The experiments were performed ex vivo using short-term cell cultures of blood and bone marrow cells from newly diagnosed untreated patients. We analyzed the expression of active caspase-3 and the BCL-2/BAX ratio as markers of apoptosis and the expression of phosphorylated histone H2AX (γH2AX) and activated ATM kinase, which are reporters of DNA damage. The results of our study revealed that resveratrol induced apoptosis in CLL cells in a tumor-specific manner but did not affect non-leukemic cells, and apoptosis was associated with a decreased BCL2/BAX ratio. Here, we report for the first time that both resveratrol + fludarabine and resveratrol + cladribine caused a higher rate of apoptosis in comparison to the rate caused by a single drug. The percentage of apoptotic cells induced by resveratrol alone was higher in the group of patients with better prognostic markers than in those with worse prognostic markers. However, the rates of apoptosis caused by resveratrol combined with purine analogues were independent of ZAP-70 and CD38 expression and the clinical state of the disease; they were only dependent on the presence of high-risk cytogenetic abnormalities. We also observed an increase in γH2AX expression together with a rise in activated ATM in most of the analyzed samples. The obtained results indicate that resveratrol might warrant further study as a new therapeutic option for CLL patients. This naturally occurring substance may be used as a single agent, especially in older persons for whom there are some limitations for the use of aggressive treatment. On the other hand, a lower purine analogue dose could potentially be used in combination with resveratrol because of their combined effect. One of the mechanisms of action of resveratrol is the induction of DNA damage, which ultimately leads to apoptosis

    Potential of a multiparametric optical sensor for determining in situ the maturity components of red and white vitis vinifera wine grapes

    Get PDF
    A non-destructive fluorescence-based technique for evaluating Vitis vinifera L. grape maturity using a portable sensor (Multiplex ®) is presented. It provides indices of anthocyanins and chlorophyll in Cabernet Sauvignon, Merlot and Sangiovese red grapes and of flavonols and chlorophyll in Vermentino white grapes. The good exponential relationship between the anthocyanin index and the actual anthocyanin content determined by wet chemistry was used to estimate grape anthocyanins from in field sensor data during ripening. Marked differences were found in the kinetics and the amount of anthocyanins between cultivars and between seasons. A sensor-driven mapping of the anthocyanin content in the grapes, expressed as g/kg fresh weight, was performed on a 7-ha vineyard planted with Sangiovese. In the Vermentino, the flavonol index was favorably correlated to the actual content of berry skin flavonols determined by means of HPLC analysis of skin extracts. It was used to make a non-destructive estimate of the evolution in the flavonol concentration in grape berry samplings. The chlorophyll index was inversely correlated in linear manner to the total soluble solids (°Brix): it could, therefore, be used as a new index of technological maturity. The fluorescence sensor (Multiplex) possesses a high potential for representing an important innovative tool for controlling grape maturity in precision viticulture

    Single and repeated moderate consumption of native or dealcoholized red wine show different effects on antioxidant parameters in blood and DNA strand breaks in peripheral leukocytes in healthy volunteers: a randomized controlled trial [ISRCTN68505294]

    Get PDF
    BACKGROUND: Red wine (RW) is rich in antioxidant polyphenols that might protect from oxidative stress related diseases, such as cardiovascular disease and cancer. Antioxidant effects after single ingestion of RW or dealcoholized RW (DRW) have been observed in several studies, but results after regular consumption are contradictory. Thus, we examined if single or repeated consumption of moderate amounts of RW or DRW exert antioxidant activity in vivo. METHODS: Total phenolic content and concentration of other antioxidants in plasma/serum, total antioxidant capacity (TEAC) in plasma as well as DNA strand breaks in peripheral leukocytes were measured in healthy non-smokers A) before, 90 and 360 min after ingestion of one glass of RW, DRW or water; B) before and after consumption of one glass of RW or DRW daily for 6 weeks. DNA strand breaks (SB) were determined by single cell gel electrophoresis (Comet Assay) in untreated cells and after induction of oxidative stress ex vivo with H(2)O(2 )(300 μM, 20 min). RESULTS: Both RW and DRW transiently increased total phenolic content in plasma after single consumption, but only RW lead to a sustained increase if consumed regularly. Plasma antioxidant capacity was not affected by single or regular consumption of RW or DRW. Effects of RW and DRW on DNA SB were conflicting. DNA strand breaks in untreated cells increased after a single dose of RW and DRW, whereas H(2)O(2 )induced SB were reduced after DRW. In contrast, regular RW consumption reduced SB in untreated cells but did not affect H(2)O(2 )induced SB. CONCLUSION: The results suggest that consumption of both RW and DRW leads to an accumulation of phenolic compounds in plasma without increasing plasma antioxidant capacity. Red wine and DRW seem to affect the occurrence of DNA strand breaks, but this cannot be referred to antioxidant effects

    Metabolic constituents of grapevine and grape-derived products

    Get PDF
    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology
    corecore