74 research outputs found

    SPIROMICS Protocol for Multicenter Quantitative Computed Tomography to Phenotype the Lungs

    Get PDF
    Multidetector row computed tomography (MDCT) is increasingly taking a central role in identifying subphenotypes within chronic obstructive pulmonary disease (COPD), asthma, and other lung-related disease populations, allowing for the quantification of the amount and distribution of altered parenchyma along with the characterization of airway and vascular anatomy. The embedding of quantitative CT (QCT) into a multicenter trial with a variety of scanner makes and models along with the variety of pressures within a clinical radiology setting has proven challenging, especially in the context of a longitudinal study. SPIROMICS (Subpopulations and Intermediate Outcome Measures in COPD Study), sponsored by the National Institutes of Health, has established a QCT lung assessment system (QCT-LAS), which includes scanner-specific imaging protocols for lung assessment at total lung capacity and residual volume. Also included are monthly scanning of a standardized test object and web-based tools for subject registration, protocol assignment, and data transmission coupled with automated image interrogation to assure protocol adherence. The SPIROMICS QCT-LAS has been adopted and contributed to by a growing number of other multicenter studies in which imaging is embedded. The key components of the SPIROMICS QCT-LAS along with evidence of implementation success are described herein. While imaging technologies continue to evolve, the required components of a QCT-LAS provide the framework for future studies, and the QCT results emanating from SPIROMICS and the growing number of other studies using the SPIROMICS QCT-LAS will provide a shared resource of image-derived pulmonary metrics

    COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease

    Get PDF
    Background:Chronic obstructive pulmonary disease (COPD) remains a major cause of morbidity and mortality. Present-day diagnostic criteria are largely based solely on spirometric criteria. Accumulating evidence has identified a substantial number of individuals without spirometric evidence of COPD who suffer from respiratory symptoms and/or increased morbidity and mortality. There is a clear need for an expanded definition of COPD that is linked to physiologic, structural (computed tomography [CT]) and clinical evidence of disease. Using data from the COPD Genetic Epidemiology study (COPDGene®), we hypothesized that an integrated approach that includes environmental exposure, clinical symptoms, chest CT imaging and spirometry better defines disease and captures the likelihood of progression of respiratory obstruction and mortality. Methods:Four key disease characteristics - environmental exposure (cigarette smoking), clinical symptoms (dyspnea and/or chronic bronchitis), chest CT imaging abnormalities (emphysema, gas trapping and/or airway wall thickening), and abnormal spirometry - were evaluated in a group of 8784 current and former smokers who were participants in COPDGene® Phase 1. Using these 4 disease characteristics, 8 categories of participants were identified and evaluated for odds of spirometric disease progression (FEV1 > 350 ml loss over 5 years), and the hazard ratio for all-cause mortality was examined. Results:Using smokers without symptoms, CT imaging abnormalities or airflow obstruction as the reference population, individuals were classified as Possible COPD, Probable COPD and Definite COPD. Current Global initiative for obstructive Lung Disease (GOLD) criteria would diagnose 4062 (46%) of the 8784 study participants with COPD. The proposed COPDGene® 2019 diagnostic criteria would add an additional 3144 participants. Under the new criteria, 82% of the 8784 study participants would be diagnosed with Possible, Probable or Definite COPD. These COPD groups showed increased risk of disease progression and mortality. Mortality increased in patients as the number of their COPD characteristics increased, with a maximum hazard ratio for all cause-mortality of 5.18 (95% confidence interval [CI]: 4.15-6.48) in those with all 4 disease characteristics. Conclusions:A substantial portion of smokers with respiratory symptoms and imaging abnormalities do not manifest spirometric obstruction as defined by population normals. These individuals are at significant risk of death and spirometric disease progression. We propose to redefine the diagnosis of COPD through an integrated approach using environmental exposure, clinical symptoms, CT imaging and spirometric criteria. These expanded criteria offer the potential to stimulate both current and future interventions that could slow or halt disease progression in patients before disability or irreversible lung structural changes develop

    Eculizumab improves fatigue in refractory generalized myasthenia gravis

    Get PDF

    Common Genetic Polymorphisms Influence Blood Biomarker Measurements in COPD

    Get PDF
    Implementing precision medicine for complex diseases such as chronic obstructive lung disease (COPD) will require extensive use of biomarkers and an in-depth understanding of how genetic, epigenetic, and environmental variations contribute to phenotypic diversity and disease progression. A meta-analysis from two large cohorts of current and former smokers with and without COPD [SPIROMICS (N = 750); COPDGene (N = 590)] was used to identify single nucleotide polymorphisms (SNPs) associated with measurement of 88 blood proteins (protein quantitative trait loci; pQTLs). PQTLs consistently replicated between the two cohorts. Features of pQTLs were compared to previously reported expression QTLs (eQTLs). Inference of causal relations of pQTL genotypes, biomarker measurements, and four clinical COPD phenotypes (airflow obstruction, emphysema, exacerbation history, and chronic bronchitis) were explored using conditional independence tests. We identified 527 highly significant (p 10% of measured variation in 13 protein biomarkers, with a single SNP (rs7041; p = 10−392) explaining 71%-75% of the measured variation in vitamin D binding protein (gene = GC). Some of these pQTLs [e.g., pQTLs for VDBP, sRAGE (gene = AGER), surfactant protein D (gene = SFTPD), and TNFRSF10C] have been previously associated with COPD phenotypes. Most pQTLs were local (cis), but distant (trans) pQTL SNPs in the ABO blood group locus were the top pQTL SNPs for five proteins. The inclusion of pQTL SNPs improved the clinical predictive value for the established association of sRAGE and emphysema, and the explanation of variance (R2) for emphysema improved from 0.3 to 0.4 when the pQTL SNP was included in the model along with clinical covariates. Causal modeling provided insight into specific pQTL-disease relationships for airflow obstruction and emphysema. In conclusion, given the frequency of highly significant local pQTLs, the large amount of variance potentially explained by pQTL, and the differences observed between pQTLs and eQTLs SNPs, we recommend that protein biomarker-disease association studies take into account the potential effect of common local SNPs and that pQTLs be integrated along with eQTLs to uncover disease mechanisms. Large-scale blood biomarker studies would also benefit from close attention to the ABO blood group

    Consistent improvement with eculizumab across muscle groups in myasthenia gravis

    Get PDF

    Post-intervention Status in Patients With Refractory Myasthenia Gravis Treated With Eculizumab During REGAIN and Its Open-Label Extension

    Get PDF
    OBJECTIVE: To evaluate whether eculizumab helps patients with anti-acetylcholine receptor-positive (AChR+) refractory generalized myasthenia gravis (gMG) achieve the Myasthenia Gravis Foundation of America (MGFA) post-intervention status of minimal manifestations (MM), we assessed patients' status throughout REGAIN (Safety and Efficacy of Eculizumab in AChR+ Refractory Generalized Myasthenia Gravis) and its open-label extension. METHODS: Patients who completed the REGAIN randomized controlled trial and continued into the open-label extension were included in this tertiary endpoint analysis. Patients were assessed for the MGFA post-intervention status of improved, unchanged, worse, MM, and pharmacologic remission at defined time points during REGAIN and through week 130 of the open-label study. RESULTS: A total of 117 patients completed REGAIN and continued into the open-label study (eculizumab/eculizumab: 56; placebo/eculizumab: 61). At week 26 of REGAIN, more eculizumab-treated patients than placebo-treated patients achieved a status of improved (60.7% vs 41.7%) or MM (25.0% vs 13.3%; common OR: 2.3; 95% CI: 1.1-4.5). After 130 weeks of eculizumab treatment, 88.0% of patients achieved improved status and 57.3% of patients achieved MM status. The safety profile of eculizumab was consistent with its known profile and no new safety signals were detected. CONCLUSION: Eculizumab led to rapid and sustained achievement of MM in patients with AChR+ refractory gMG. These findings support the use of eculizumab in this previously difficult-to-treat patient population. CLINICALTRIALSGOV IDENTIFIER: REGAIN, NCT01997229; REGAIN open-label extension, NCT02301624. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, after 26 weeks of eculizumab treatment, 25.0% of adults with AChR+ refractory gMG achieved MM, compared with 13.3% who received placebo

    Non-emphysematous chronic obstructive pulmonary disease is associated with diabetes mellitus

    Get PDF
    Background: Chronic obstructive pulmonary disease (COPD) has been classically divided into blue bloaters and pink puffers. The utility of these clinical subtypes is unclear. However, the broader distinction between airway-predominant and emphysema-predominant COPD may be clinically relevant. The objective was to define clinical features of emphysema-predominant and non-emphysematous COPD patients. Methods: Current and former smokers from the Genetic Epidemiology of COPD Study (COPDGene) had chest computed tomography (CT) scans with quantitative image analysis. Emphysema-predominant COPD was defined by low attenuation area at -950 Hounsfield Units (LAA-950) ≥10%. Non-emphysematous COPD was defined by airflow obstruction with minimal to no emphysema (LAA-950 < 5%). Results: Out of 4197 COPD subjects, 1687 were classified as emphysema-predominant and 1817 as non-emphysematous; 693 had LAA-950 between 5-10% and were not categorized. Subjects with emphysema-predominant COPD were older (65.6 vs 60.6 years, p < 0.0001) with more severe COPD based on airflow obstruction (FEV1 44.5 vs 68.4%, p < 0.0001), greater exercise limitation (6-minute walk distance 1138 vs 1331 ft, p < 0.0001) and reduced quality of life (St. George's Respiratory Questionnaire score 43 vs 31, p < 0.0001). Self-reported diabetes was more frequent in non-emphysematous COPD (OR 2.13, p < 0.001), which was also confirmed using a strict definition of diabetes based on medication use. The association between diabetes and non-emphysematous COPD was replicated in the ECLIPSE study. Conclusions: Non-emphysematous COPD, defined by airflow obstruction with a paucity of emphysema on chest CT scan, is associated with an increased risk of diabetes. COPD patients without emphysema may warrant closer monitoring for diabetes, hypertension, and hyperlipidemia and vice versa

    Asthma Is a Risk Factor for Respiratory Exacerbations Without Increased Rate of Lung Function Decline:Five-Year Follow-up in Adult Smokers From the COPDGene Study

    Get PDF

    Radiomic biomarkers from chest computed tomography are assistive in immunotherapy response prediction for non-small cell lung cancer.

    No full text
    BACKGROUND: Immunotherapies, such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1) antibodies have been shown to improve overall and progression-free survival (PFS) in patients with locally advanced or metastatic non-small cell lung cancer (NSCLC). However, not all patients derive a meaningful clinical benefit. Additionally, patients receiving anti-PD-1/PD-L1 therapy can experience immune-related adverse events (irAEs). Clinically significant irAEs may require temporary pause or discontinuation of treatment. Having a tool to identify patients who may not benefit and/or are at risk for developing severe irAEs from immunotherapy will aid in an informed decision-making process for the patients and their physicians. METHODS: Computed tomography (CT) scans and clinical data were retrospectively collected for this study to develop three prediction models using (I) radiomic features, (II) clinical features, and (III) radiomic and clinical features combined. Each subject had 6 clinical features and 849 radiomic features extracted. Selected features were run through an artificial neural network (NN) trained on 70% of the cohort, maintaining the case and control ratio. The NN was assessed by calculating the area-under-the-receiver-operating-characteristic curve (AUC-ROC), area-under-the-precision-recall curve (AUC-PR), sensitivity, and specificity. RESULTS: A cohort of 132 subjects, of which 43 (33%) had a PFS ≤90 days and 89 (67%) of which had a PFS \u3e90 days was used to develop the prediction models. The radiomic model was able to predict progression-free survival with a training AUC-ROC of 87% and testing AUC-ROC, sensitivity, and specificity of 83%, 75%, and 81%, respectively. In this cohort, the clinical and radiomic combined features did add a slight increase in the specificity (85%) but with a decrease in sensitivity (75%) and AUC-ROC (81%). CONCLUSIONS: Whole lung segmentation and feature extraction can identify those that would see a benefit from anti-PD-1/PD-L1 therapy
    • …
    corecore