2,172 research outputs found

    Electronic correlation in the infrared optical properties of the quasi two dimensional κ\kappa-type BEDT-TTF dimer system

    Get PDF
    The polarized optical reflectance spectra of the quasi two dimensional organic correlated electron system κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]YY, Y=Y = Br and Cl are measured in the infrared region. The former shows the superconductivity at TcT_{\rm c} \simeq 11.6 K and the latter does the antiferromagnetic insulator transition at TNT_{\rm N} \simeq 28 K. Both the specific molecular vibration mode ν3(ag)\nu_{3}(a_{g}) of the BEDT-TTF molecule and the optical conductivity hump in the mid-infrared region change correlatively at TT^{*} \simeq 38 K of κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br, although no indication of TT^{*} but the insulating behaviour below TinsT_{\rm ins} \simeq 50-60 K are found in κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl. The results suggest that the electron-molecular vibration coupling on the ν3(ag)\nu_{3}(a_{g}) mode becomes weak due to the enhancement of the itinerant nature of the carriers on the dimer of the BEDT-TTF molecules below TT^{*}, while it does strong below TinsT_{\rm ins} because of the localized carriers on the dimer. These changes are in agreement with the reduction and the enhancement of the mid-infrared conductivity hump below TT^{*} and TinsT_{\rm ins}, respectively, which originates from the transitions between the upper and lower Mott-Hubbard bands. The present observations demonstrate that two different metallic states of κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Br are regarded as {\it a correlated good metal} below TT^{*} including the superconducting state and {\it a half filling bad metal} above TT^{*}. In contrast the insulating state of κ\kappa-(BEDT-TTF)2_{2}Cu[N(CN)2_{2}]Cl below TinsT_{\rm ins} is the Mott insulator.Comment: 8 pages, 7 figure

    Tyrosine Sulfation of the Amino Terminus of PSGL-1 Is Critical for Enterovirus 71 Infection

    Get PDF
    Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease, a common febrile disease in children; however, EV71 has been also associated with various neurological diseases including fatal cases in large EV71 outbreaks particularly in the Asia Pacific region. Recently we identified human P-selectin glycoprotein ligand-1 (PSGL-1) as a cellular receptor for entry and replication of EV71 in leukocytes. PSGL-1 is a sialomucin expressed on the surface of leukocytes, serves as a high affinity counterreceptor for selectins, and mediates leukocyte rolling on the endothelium. The PSGL-1–P-selectin interaction requires sulfation of at least one of three clustered tyrosines and an adjacent O-glycan expressing sialyl Lewis x in an N-terminal region of PSGL-1. To elucidate the molecular basis of the PSGL-1–EV71 interaction, we generated a series of PSGL-1 mutants and identified the post-translational modifications that are critical for binding of PSGL-1 to EV71. We expressed the PSGL-1 mutants in 293T cells and the transfected cells were assayed for their abilities to bind to EV71 by flow cytometry. We found that O-glycosylation on T57, which is critical for PSGL-1–selectin interaction, is not necessary for PSGL-1 binding to EV71. On the other hand, site-directed mutagenesis at one or more potential tyrosine sulfation sites in the N-terminal region of PSGL-1 significantly impaired PSGL-1 binding to EV71. Furthermore, an inhibitor of sulfation, sodium chlorate, blocked the PSGL-1–EV71 interaction and inhibited PSGL-1-mediated viral replication of EV71 in Jurkat T cells in a dose-dependent manner. Thus, the results presented in this study reveal that tyrosine sulfation, but not O-glycosylation, in the N-terminal region of PSGL-1 may facilitate virus entry and replication of EV71 in leukocytes

    Ferromagnetic Semiconductors: Moving Beyond (Ga,Mn)As

    Full text link
    The recent development of MBE techniques for growth of III-V ferromagnetic semiconductors has created materials with exceptional promise in spintronics, i.e. electronics that exploit carrier spin polarization. Among the most carefully studied of these materials is (Ga,Mn)As, in which meticulous optimization of growth techniques has led to reproducible materials properties and ferromagnetic transition temperatures well above 150 K. We review progress in the understanding of this particular material and efforts to address ferromagnetic semiconductors as a class. We then discuss proposals for how these materials might find applications in spintronics. Finally, we propose criteria that can be used to judge the potential utility of newly discovered ferromagnetic semiconductors, and we suggest guidelines that may be helpful in shaping the search for the ideal material.Comment: 37 pages, 4 figure

    Search for GeV Gamma-ray Counterparts of Gravitational Wave Events by CALET

    Get PDF
    We present results on searches for gamma-ray counterparts of the LIGO/Virgo gravitational-wave events using CALorimetric Electron Telescope ({\sl CALET}) observations. The main instrument of {\sl CALET}, CALorimeter (CAL), observes gamma-rays from 1\sim1 GeV up to 10 TeV with a field of view of nearly 2 sr. In addition, the {\sl CALET} gamma-ray burst monitor (CGBM) views \sim3 sr and 2π\sim2\pi sr of the sky in the 7 keV -- 1 MeV and the 40 keV -- 20 MeV bands, respectively, by using two different crystal scintillators. The {\sl CALET} observations on the International Space Station started in October 2015, and here we report analyses of events associated with the following gravitational wave events: GW151226, GW170104, GW170608, GW170814 and GW170817. Although only upper limits on gamma-ray emission are obtained, they correspond to a luminosity of 1049105310^{49}\sim10^{53} erg s1^{-1} in the GeV energy band depending on the distance and the assumed time duration of each event, which is approximately the order of luminosity of typical short gamma-ray bursts. This implies there will be a favorable opportunity to detect high-energy gamma-ray emission in further observations if additional gravitational wave events with favorable geometry will occur within our field-of-view. We also show the sensitivity of {\sl CALET} for gamma-ray transient events which is the order of 10710^{-7}~erg\,cm2^{-2}\,s1^{-1} for an observation of 100~s duration.Comment: 12 pages, 8 figures, 1 table. Accepted for publication in Astrophysical Journa

    On-orbit Operations and Offline Data Processing of CALET onboard the ISS

    Get PDF
    The CALorimetric Electron Telescope (CALET), launched for installation on the International Space Station (ISS) in August, 2015, has been accumulating scientific data since October, 2015. CALET is intended to perform long-duration observations of high-energy cosmic rays onboard the ISS. CALET directly measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20 TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can measure the spectrum of gamma rays well into the TeV range, and the spectra of protons and nuclei up to a PeV. In order to operate the CALET onboard ISS, JAXA Ground Support Equipment (JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established. Scientific operations using CALET are planned at WCOC, taking into account orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences are used to control the CALET observation modes on orbit. Calibration data acquisition by, for example, recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit while maintaining maximum exposure to high-energy electrons and other high-energy shower events by always having the high-energy trigger mode active. The WCOC also prepares and distributes CALET flight data to collaborators in Italy and the United States. As of August 31, 2017, the total observation time is 689 days with a live time fraction of the total time of approximately 84%. Nearly 450 million events are collected with a high-energy (E>10 GeV) trigger. By combining all operation modes with the excellent-quality on-orbit data collected thus far, it is expected that a five-year observation period will provide a wealth of new and interesting results.Comment: 11 pages, 7 figures, published online 27 February 201
    corecore