741 research outputs found

    A Robust Low-Complexity MIMO Detector for Rank 4 LTE/LTE-A Systems

    Full text link
    This paper deals with MIMO detection for rank 4 LTE systems. The paper revolves around a previously known detector [1, by Inkyu Lee, TCOM'2010] which we shall refer to as RCSMLD (Reduced-Constellation-Size-Maximum-Likelihood-Detector). However, a direct application of the scheme in [1, by Inkyu Lee, TCOM'2010] to LTE/LTE-A rank 4 test cases results in unsatisfactory performance. The first contribution of the paper is to introduce several modifications that can jointly be applied to the basic RCSMLD scheme which, taken together, result in excellent performance. Our second contribution is the development of a highly efficient hardware structure for RCSMLD that allows for an implementation with very few multiplications.Comment: Accepted for publication in PIMRC-2014, Washington DC, US

    Coupling of carbon dioxide and water vapor exchanges of irrigated and rainfed maize–soybean cropping systems and water productivity

    Get PDF
    Continuous measurements of CO2 and water vapor exchanges made in three cropping systems (irrigated continuous maize, irrigated maize–soybean rotation, and rainfed maize–soybean rotation) in eastern Nebraska, USA during 6 years are discussed. Close coupling between seasonal distributions of gross primary production (GPP) and evapotranspiration (ET) were observed in each growing season. Mean growing season totals of GPP in irrigated maize and soybean were 1738 ± 114 and 996 ± 69 g C m−2, respectively (±standard deviation). Corresponding mean values of growing season ET totals were 545 ± 27 and 454 ± 23 mm, respectively. Irrigation affected GPP and ET similarly, both growing season totals were about 10% higher than those of corresponding rainfed crops. Maize, under both irrigated and rainfed conditions, fixed 74% more carbon than soybean while using only 12–20% more water. The green leaf area index (LAI) explained substantial portions (91% for maize and 90% for soybean) of the variability in GPPPAR (GPP over a narrow range of incident photosynthetically active radiation) and in ET/ETo (71% for maize and 75% for soybean, ETo is the reference evapotranspiration). Water productivity (WP or water use efficiency) is defined here as the ratio of cumulative GPP or above-ground biomass and ET (photosynthetic water productivity = ∑GPP/∑ET and biomass water productivity = above-ground biomass/∑ET). When normalized by ETo, the photosynthetic water productivity (WPETo) was 18.4 ± 1.5 g C m−2 for maize and 12.0 ± 1.0 g C m−2 for soybean. When normalized by ETo, the biomass water productivity (WPETo) was 27.5 ± 2.3 g DM m−2 for maize and 14.1 ± 3.1 g DM m−2 for soybean. Comparisons of these results, among different years of measurement and management practices (continuous vs rotation cropping, irrigated vs rainfed) in this study and those from other locations, indicated the conservative nature of normalized water productivity, as also pointed out by previous investigators

    Coupling of carbon dioxide and water vapor exchanges of irrigated and rainfed maize–soybean cropping systems and water productivity

    Get PDF
    Continuous measurements of CO2 and water vapor exchanges made in three cropping systems (irrigated continuous maize, irrigated maize–soybean rotation, and rainfed maize–soybean rotation) in eastern Nebraska, USA during 6 years are discussed. Close coupling between seasonal distributions of gross primary production (GPP) and evapotranspiration (ET) were observed in each growing season. Mean growing season totals of GPP in irrigated maize and soybean were 1738 ± 114 and 996 ± 69 g C m−2, respectively (±standard deviation). Corresponding mean values of growing season ET totals were 545 ± 27 and 454 ± 23 mm, respectively. Irrigation affected GPP and ET similarly, both growing season totals were about 10% higher than those of corresponding rainfed crops. Maize, under both irrigated and rainfed conditions, fixed 74% more carbon than soybean while using only 12–20% more water. The green leaf area index (LAI) explained substantial portions (91% for maize and 90% for soybean) of the variability in GPPPAR (GPP over a narrow range of incident photosynthetically active radiation) and in ET/ETo (71% for maize and 75% for soybean, ETo is the reference evapotranspiration). Water productivity (WP or water use efficiency) is defined here as the ratio of cumulative GPP or above-ground biomass and ET (photosynthetic water productivity = ∑GPP/∑ET and biomass water productivity = above-ground biomass/∑ET). When normalized by ETo, the photosynthetic water productivity (WPETo) was 18.4 ± 1.5 g C m−2 for maize and 12.0 ± 1.0 g C m−2 for soybean. When normalized by ETo, the biomass water productivity (WPETo) was 27.5 ± 2.3 g DM m−2 for maize and 14.1 ± 3.1 g DM m−2 for soybean. Comparisons of these results, among different years of measurement and management practices (continuous vs rotation cropping, irrigated vs rainfed) in this study and those from other locations, indicated the conservative nature of normalized water productivity, as also pointed out by previous investigators

    Annihilation of vortex dipoles in an Oblate Bose-Einstein Condensate

    Full text link
    We theoretically explore the annihilation of vortex dipoles, generated when an obstacle moves through an oblate Bose-Einstein condensate, and examine the energetics of the annihilation event. We show that the gray soliton, which results from the vortex dipole annihilation, is lower in energy than the vortex dipole. We also investigate the annihilation events numerically and observe that the annihilation occurs only when the vortex dipole overtakes the obstacle and comes closer than the coherence length. Furthermore, we find that the noise reduces the probability of annihilation events. This may explain the lack of annihilation events in experimental realizations.Comment: 8 pages and 9 figure

    Gross primary production and ecosystem respiration of irrigated and rainfed maize–soybean cropping systems over 8 years

    Get PDF
    The objective of this study is to examine interannual variability of carbon dioxide exchange and relevant controlling factors in irrigated and rainfed maize–soybean agroecosystems. The mean annual gross primary production (GPP) of irrigated and rainfed maize was 1796 ± 92 g C m−2 y−1 (±standard deviation) and 1536 ± 74 g C m−2 y−1, respectively. Mean annual GPP of soybean (average of irrigated and rainfed crops) was about 56% that of maize. Light use efficiency of maize and soybean during clear sky conditions were 1.96 ± 0.10 and 1.37 ± 0.06 g C MJ−1, respectively. A light use efficiency model, incorporating sensitivity to diffuse light, provided a reasonable simulation of daily GPP of maize and soybean (r2 = 0.89–0.98 and 0.85–0.97, respectively). Simulated growing season GPP totals were within about 10% of the measured values. The green leaf area index (LAI) played a dominant role in explaining interannual variability of GPP in maize. For soybean, both LAI and PAR contributed to the interannual variability. Mean growing season ecosystem respiration (Re) totals were 1029 ± 46 g C m−2 for irrigated maize and 872 ± 29 g C m−2 for rainfed maize. The growing season Re total of soybean (average of irrigated and rainfed crops) was about 78% that of maize. A relationship, based on a reference soil respiration (Re20), air temperature (Ta), and LAI, simulated daily growing season Re reasonably well for maize and soybean (r2 = 0.77–0.91 and 0.51–0.94, respectively). Modeled Re totals during the growing season were generally within 10% of the measured values. Variations in the LAI and Re20 explained the majority of the interannual variability in growing season Re for maize. In addition to LAI and Re20, Ta also contributed to the soybean Re variability. Non growing season Re contributed 10–20% and 17–24% of annual Re in maize and soybean, respectively and was primarily controlled by air temperature and residue biomass (r2 ∼ 81%). About 70% of maize GPP was lost in Re, resulting in the mean annual net ecosystem CO2 production (NEP) of 552 ± 73 g C m−2 y−1 for irrigated maize and 471 ± 52 g C m−2 y−1 for rainfed maize. For soybean, however, most of the annual GPP was lost in Re resulting in a mean annual NEP of −57 ± 43 and 10 ± 52 g C m−2 y−1 for irrigated and rainfed soybean, respectively. In general, as compared to Re, GPP contributed more to explaining the departures (ΔNEP) of NEP from the 4-year mean for maize. Both GPP and Re contributed to the ΔNEP for soybean. Results on the net biome production (NBP) indicated that the irrigated maize–soybean rotation was initially a moderate source of carbon; however, the system appears to be approaching near C neutral recently. The rainfed maize–soybean rotation is approximately C neutral

    Mass transfer from rough surfaces

    Get PDF
    CER70-71SBV-JEC59.May 1971.Includes bibliographical references (pages 82-89).The work upon which this report is based was supported by funds provided by the United States Department of the Interior, Office of Water Resources Research, as authorized under the Water Resources Research Act of 1964 through contract no. 14-01-0001.Through contract no. 14-01-0001

    Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars

    Full text link
    We parameterize the recently proposed generalized Skyrme effective force (GSEF) containing extended density dependence. The parameters of the GSEF are determined by the fit to several properties of the normal and isospin-rich nuclei. We also include in our fit a realistic equation of state for the pure neutron matter up to high densities so that the resulting Skyrme parameters can be suitably used to model the neutron star with the "canonical" mass (1.4M\sim 1.4 M_\odot). For the appropriate comparison we generate a parameter set for the standard Skyrme effective force (SSEF) using exactly the same set of the data as employed to determine the parameters of the GSEF. We find that the GSEF yields larger values for the neutron skin thickness which are closer to the recent predictions based on the isospin diffusion data. The Skyrme parameters so obtained are employed to compute the strength function for the isoscalar giant monopole, dipole and quadrupole resonances. It is found that in the case of GSEF, due to the the larger value of the nucleon effective mass the values of centroid energies for the isoscalar giant resonances are in better agreement with the corresponding experimental data in comparison to those obtained using the SSEF. We also present results for some of the key properties associated with the neutron star of "canonical" mass and for the one with the maximum mass.Comment: 45pages, 16 figure

    Record statistics in random vectors and quantum chaos

    Full text link
    The record statistics of complex random states are analytically calculated, and shown that the probability of a record intensity is a Bernoulli process. The correlation due to normalization leads to a probability distribution of the records that is non-universal but tends to the Gumbel distribution asymptotically. The quantum standard map is used to study these statistics for the effect of correlations apart from normalization. It is seen that in the mixed phase space regime the number of intensity records is a power law in the dimensionality of the state as opposed to the logarithmic growth for random states.Comment: figures redrawn, discussion adde

    Electronic conduction in a three-terminal molecular transistor

    Full text link
    The electronic conduction of a novel, three-terminal molecular architecture, analogous to a heterojunction bipolar transistor is studied. In this architecture, two diode arms consisting of donor-acceptor molecular wires fuse through a ring, while a gate modulating wire is a \pi-conjugated wire. The calculated results show the enhancement or depletion mode of a transistor by applying a gate field along the positive or negative direction. A small gate field is required to switch on the current in the proposed architecture. The changes in the electronic conduction can be attributed to the intrinsic dipolar molecular architecture in terms of the evolution of molecular wavefunctions, specifically the one associated with the terphenyl group of the modulating wire in the presence of the gate field.Comment: 13 pages, 5 figure

    Modeling gross primary production of irrigated and rain-fed maize using MODIS imagery and CO\u3csub\u3e2\u3c/sub\u3e flux tower data

    Get PDF
    Abstract Information on gross primary production (GPP) of maize croplands is needed for assessing and monitoring maize crop conditions and the carbon cycle. A number of studies have used the eddy covariance technique to measure net ecosystem exchange (NEE) of CO2 between maize cropland fields and the atmosphere and partitioned NEE data to estimate seasonal dynamics and interannual variation of GPP in maize fields having various crop rotation systems and different water management practices. How to scale up in situ observations from flux tower sites to regional and global scales is a challenging task. In this study, the Vegetation Photosynthesis Model (VPM) and satellite images from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used to estimate seasonal dynamics and interannual variation of GPP during 2001–2005 at five maize cropland sites located in Nebraska and Minnesota of the U.S.A. These sites have different crop rotation systems (continuously maize vs. maize and soybean rotated annually) and different water management practices (irrigation vs. rain-fed). The VPM is based on the concept of light absorption by chlorophyll and is driven by the Enhanced Vegetation Index (EVI) and the Land Surface Water Index (LSWI), photosynthetically active radiation (PAR), and air temperature. The seasonal dynamics of GPP predicted by the VPM agreed well with GPP estimates from eddy covariance flux tower data over the period of 2001–2005. These simulation results clearly demonstrate the potential of the VPM to scale-up GPP estimation of maize cropland, which is relevant to food, biofuel, and feedstock production, as well as food and energy security
    corecore