8 research outputs found

    meCLICK-Seq, a Substrate-Hijacking and RNA Degradation Strategy for the Study of RNA Methylation.

    Get PDF
    The fates of RNA species in a cell are controlled by ribonucleases, which degrade them by exploiting the universal structural 2'-OH group. This phenomenon plays a key role in numerous transformative technologies, for example, RNA interference and CRISPR/Cas13-based RNA editing systems. These approaches, however, are genetic or oligomer-based and so have inherent limitations. This has led to interest in the development of small molecules capable of degrading nucleic acids in a targeted manner. Here we describe click-degraders, small molecules that can be covalently attached to RNA species through click-chemistry and can degrade them, that are akin to ribonucleases. By using these molecules, we have developed the meCLICK-Seq (methylation CLICK-degradation Sequencing) a method to identify RNA modification substrates with high resolution at intronic and intergenic regions. The method hijacks RNA methyltransferase activity to introduce an alkyne, instead of a methyl, moiety on RNA. Subsequent copper(I)-catalyzed azide-alkyne cycloaddition reaction with the click-degrader leads to RNA cleavage and degradation exploiting a mechanism used by endogenous ribonucleases. Focusing on N6-methyladenosine (m6A), meCLICK-Seq identifies methylated transcripts, determines RNA methylase specificity, and reliably maps modification sites in intronic and intergenic regions. Importantly, we show that METTL16 deposits m6A to intronic polyadenylation (IPA) sites, which suggests a potential role for METTL16 in IPA and, in turn, splicing. Unlike other methods, the readout of meCLICK-Seq is depletion, not enrichment, of modified RNA species, which allows a comprehensive and dynamic study of RNA modifications throughout the transcriptome, including regions of low abundance. The click-degraders are highly modular and so may be exploited to study any RNA modification and design new technologies that rely on RNA degradation.UKRI (BBSRC DTP scholarships to S.M. and H.K.C) and the Jardine Foundation and Cambridge Trust (PhD scholarship to M.E.H.)

    Nucleotide resolution profiling of m3C RNA modification by HAC-seq

    No full text
    Cellular RNAs are subject to a myriad of different chemical modifications that play important roles in controlling RNA expression and function. Dysregulation of certain RNA modifications, the so-called ‘epitranscriptome’, contributes to human disease. One limitation in studying the functional, physiological, and pathological roles of the epitranscriptome is the availability of methods for the precise mapping of individual RNA modifications throughout the transcriptome. 3-Methylcytidine (m3C) modification of certain tRNAs is well established and was also recently detected in mRNA. However, methods for the specific mapping of m3C throughout the transcriptome are lacking. Here, we developed a m3C-specific technique, Hydrazine-Aniline Cleavage sequencing (HAC-seq), to profile the m3C methylome at single-nucleotide resolution. We applied HAC-seq to analyze ribosomal RNA (rRNA)-depleted total RNAs in human cells. We found that tRNAs are the predominant m3C-modified RNA species, with 17 m3C modification sites on 11 cytoplasmic and 2 mitochondrial tRNA isoacceptors in MCF7 cells. We found no evidence for m3C-modification of mRNA or other non-coding RNAs at comparable levels to tRNAs in these cells. HAC-seq provides a novel method for the unbiased, transcriptome-wide identification of m3C RNA modification at single-nucleotide resolution, and could be widely applied to reveal the m3C methylome in different cells and tissues

    PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression

    No full text
    mRNA modifications play important roles in regulating gene expression. One of the most abundant mRNA modifications is N6,2-O-dimethyladenosine (m6Am). Here, we demonstrate that m6Am is an evolutionarily conserved mRNA modification mediated by the Phosphorylated CTD Interacting Factor 1 (PCIF1), which catalyzes m6A methylation on 2-O-methylated adenine located at the 5′ ends of mRNAs. Furthermore, PCIF1 catalyzes only 5′ m6Am methylation of capped mRNAs but not internal m6A methylation in vitro and in vivo. To study the biological role of m6Am, we developed a robust methodology (m6Am-Exo-Seq) to map its transcriptome-wide distribution, which revealed no global crosstalk between m6Am and m6A under assayed conditions, suggesting that m6Am is functionally distinct from m6A. Importantly, we find that m6Am does not alter mRNA transcription or stability but negatively impacts cap-dependent translation of methylated mRNAs. Together, we identify the only human mRNA m6Am methyltransferase and demonstrate a mechanism of gene expression regulation through PCIF1-mediated m6Am mRNA methylation

    METTL1-mediated m7G modification of Arg-TCT tRNA drives oncogenic transformation.

    No full text
    The emerging "epitranscriptomics" field is providing insights into the biological and pathological roles of different RNA modifications. The RNA methyltransferase METTL1 catalyzes N7-methylguanosine (m7G) modification of tRNAs. Here we find METTL1 is frequently amplified and overexpressed in cancers and is associated with poor patient survival. METTL1 depletion causes decreased abundance of m7G-modified tRNAs and altered cell cycle and inhibits oncogenicity. Conversely, METTL1 overexpression induces oncogenic cell transformation and cancer. Mechanistically, we find increased abundance of m7G-modified tRNAs, in particular Arg-TCT-4-1, and increased translation of mRNAs, including cell cycle regulators that are enriched in the corresponding AGA codon. Accordingly, Arg-TCT expression is elevated in many tumor types and is associated with patient survival, and strikingly, overexpression of this individual tRNA induces oncogenic transformation. Thus, METTL1-mediated tRNA modification drives oncogenic transformation through a remodeling of the mRNA "translatome" to increase expression of growth-promoting proteins and represents a promising anti-cancer target

    RNA m6A modification orchestrates a LINE-1–host interaction that facilitates retrotransposition and contributes to long gene vulnerability

    No full text

    Mapping the epigenetic modifications of DNA and RNA

    No full text
    corecore