171 research outputs found

    Neurological disorders in rural Africa - a systematic approach

    Get PDF
    Leishmaniasis in Northern and Western Africa: A Review Background/Objectives Empirical knowledge suggests that neurological disorders are common in sub-Saharan Africa. However, to date prevalence studies are scarce. The aims of our study were to assess the hospital-based prevalence of neurological disorders in a rural African setting and to describe the pattern of disease by using a systematic approach. Methods The study was conducted at the Haydom Lutheran Hospital in northern Tanzania, Manyara region. Over a period of eight months all patients admitted to hospital were seen prospectively in consecutive order by aneurologist (ASW). Results Out of 8676 admissions 740 patients (8.5%) were given a neurological diagnosis. The most frequent neurological disorders were seizures (26.6%) and infectious diseases (18.1%). The overall mortality of neurological disease was 21%. Cases were grouped according to diagnostic certainty. We suggest three major categories for neurological disorders (group 1 = no diagnostic uncertainties; group 2 = minor diagnostic uncertainties; group 3 = major diagnostic uncertainties) with implications regarding therapy and prognosis. Conclusions The above data emphasizes that neurological disease contributes substantially to morbidity and mortality in a rural African hospital. Based on the observed pattern of neurological disorders we suggest a systematic approac

    Nodding syndrome in Tanzania may not be associated with circulating anti-NMDA- and anti-VGKC receptor antibodies or decreased pyridoxal phosphate serum levels-a pilot study

    Get PDF
    Background: Nodding syndrome (NS) is a seemingly progressive epilepsy disorder of unknown underlying cause. We investigated association of pyridoxal-phosphate serum levels and occurrence of anti-neuronal antibodies against N-methyl-D-aspartate (NMDA) receptor and voltage gated potassium channel (VGKC) complex in NS patients.Methods: Sera of a Tanzanian cohort of epilepsy and NS patients and community controls were tested for the presence of anti-NMDA-receptor and anti-VGKC complex antibodies by indirect immunofluorescence assay. Furthermore pyridoxal-phosphate levels were measured.Results: Auto-antibodies against NMDA receptor or VGKC (LG1 or Caspr2) complex were not detected in sera of patients suffering from NS (n=6), NS plus other seizure types (n=16), primary generalized epilepsy (n=1) and community controls without epilepsy (n=7). Median Pyridoxal-phosphate levels in patients with NS compared to patients with primary generalized seizures and community controls were not significantly different. However, these median pyridoxal-phosphate levels are significantly lower compared to the range considered normal in Europeans.Conclusions: In this pilot study NS was not associated with serum anti-NMDA receptor or anti-VGKC complex antibodies and no association to pyridoxal-phosphate serum levels was found.Key words: nodding syndrome, epilepsy, anti-neuronal antibodies, pyridoxal-phosphat

    MRI Findings in People with Epilepsy and Nodding Syndrome in an Area Endemic for Onchocerciasis: An Observational Study.

    Get PDF
    Onchocerciasis has been implicated in the pathogenesis of epilepsy. The debate on a potential causal relationship between Onchocerca volvulus and epilepsy has taken a new direction in the light of the most recent epidemic of nodding syndrome. To document MRI changes in people with different types of epilepsy and investigate whether there is an association with O. volvulus infection. In a prospective study in southern Tanzania, an area endemic for O. volvulus with a high prevalence of epilepsy and nodding syndrome, we performed MRI on 32 people with epilepsy, 12 of which suffered from nodding syndrome. Polymerase chain reaction (PCR) of O. volvulus was performed in skin and CSF. The most frequent abnormalities seen on MRI was atrophy (twelve patients (37.5%)) followed by intraparenchymal pathologies such as changes in the hippocampus (nine patients (28.1%)), gliotic lesions (six patients (18.8%)) and subcortical signal abnormalities (three patients (9.4%)). There was an overall trend towards an association of intraparenchymal cerebral pathologies and infection with O. volvulus based on skin PCR (Fisher's Exact Test p=0.067) which was most pronounced in children and adolescents with nodding syndrome compared to those with other types of epilepsy (Fisher's Exact Test, p=0.083). Contrary to skin PCR results, PCR of CSF was negative in all patients. The observed trend towards an association of intraparenchymal cerebral pathological results on MRI and a positive skin PCR for O. volvulus despite negative PCR of CSF is intriguing and deserves further attention

    Risk of infections transmitted by arthropods and rodents in forestry workers.

    Get PDF
    One hundred and fifty-one forestry workers and 151 matched office clerks were compared as to the presence of antibodies against Borelia burgdorferi, tick-borne encephalitis virus, Puumalavirus and lymphocytic choriomeningitis virus. Their occupational risks of being infected by Borrelia was fourfold and significant, by Puumalavirus and lymphocytic choriomeningitis virus was increased but not significant. No seropositivity has been established against tick-borne encephalitis virus

    Global uncertainty in the diagnosis of neurological complications of SARS-CoV-2 infection by both neurologists and non-neurologists: An international inter-observer variability study

    Get PDF
    Introduction: Uniform case definitions are required to ensure harmonised reporting of neurological syndromes associated with SARS-CoV-2. Moreover, it is unclear how clinicians perceive the relative importance of SARS-CoV-2 in neurological syndromes, which risks under- or over-reporting. Methods: We invited clinicians through global networks, including the World Federation of Neurology, to assess ten anonymised vignettes of SARS-CoV-2 neurological syndromes. Using standardised case definitions, clinicians assigned a diagnosis and ranked association with SARS-CoV-2. We compared diagnostic accuracy and assigned association ranks between different settings and specialties and calculated inter-rater agreement for case definitions as “poor” (κ ≤ 0.4), “moderate” or “good” (κ > 0.6). Results: 1265 diagnoses were assigned by 146 participants from 45 countries on six continents. The highest correct proportion were cerebral venous sinus thrombosis (CVST, 95.8%), Guillain-Barré syndrome (GBS, 92.4%) and headache (91.6%) and the lowest encephalitis (72.8%), psychosis (53.8%) and encephalopathy (43.2%). Diagnostic accuracy was similar between neurologists and non-neurologists (median score 8 vs. 7/10, p = 0.1). Good inter-rater agreement was observed for five diagnoses: cranial neuropathy, headache, myelitis, CVST, and GBS and poor agreement for encephalopathy. In 13% of vignettes, clinicians incorrectly assigned lowest association ranks, regardless of setting and specialty. Conclusion: The case definitions can help with reporting of neurological complications of SARS-CoV-2, also in settings with few neurologists. However, encephalopathy, encephalitis, and psychosis were often misdiagnosed, and clinicians underestimated the association with SARS-CoV-2. Future work should refine the case definitions and provide training if global reporting of neurological syndromes associated with SARS-CoV-2 is to be robust

    Glatiramer acetate reduces the risk for experimental cerebral malaria: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral malaria (CM) is associated with high mortality and morbidity caused by a high rate of transient or persistent neurological sequelae. Studies on immunomodulatory and neuroprotective drugs as ancillary treatment in murine CM indicate promising potential. The current study was conducted to evaluate the efficacy of glatiramer acetate (GA), an immunomodulatory drug approved for the treatment of relapsing remitting multiple sclerosis, in preventing the death of C57Bl/6J mice infected with <it>Plasmodium berghei </it>ANKA.</p> <p>Methods and Results</p> <p>GA treatment led to a statistically significant lower risk for developing CM (57.7% versus 84.6%) in treated animals. The drug had no effect on the course of parasitaemia. The mechanism of action seems to be an immunomodulatory effect since lower IFN-gamma levels were observed in treated animals in the early course of the disease (day 4 post-infection) which also led to a lower number of brain sequestered leukocytes in treated animals. No direct neuro-protective effect such as an inhibition of apoptosis or reduction of micro-bleedings in the brain was found.</p> <p>Conclusion</p> <p>These findings support the important role of the host immune response in the pathophysiology of murine CM and might lead to the development of new adjunctive treatment strategies.</p

    Nogo-A Expression in the Brain of Mice with Cerebral Malaria

    Get PDF
    Cerebral malaria (CM) is associated with a high rate of transient or persistent neurological sequelae. Nogo-A, a protein that is highly expressed in the endoplasmic reticulum (ER) of the mammalian central nervous system (CNS), is involved in neuronal regeneration and synaptic plasticity in the injured CNS. The current study investigates the role of Nogo-A in the course of experimental CM. C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. Brain homogenates of mice with different clinical severity levels of CM, infected animals without CM and control animals were analyzed for Nogo-A up-regulation by Western blotting and immunohistochemistry. Brain regions with Nogo-A upregulation were evaluated by transmission electron microscopy. Densitometric analysis of Western blots yielded a statistically significant upregulation of Nogo-A in mice showing moderate to severe CM. The number of neurons and oligodendrocytes positive for Nogo-A did not differ significantly between the studied groups. However, mice with severe CM showed a significantly higher number of cells with intense Nogo-A staining in the brain stem. In this region ultrastructural alterations of the ER were regularly observed. Nogo-A is upregulated during the early course of experimental CM. In the brain stem of severely affected animals increased Nogo-A expression and ultrastructural changes of the ER were observed. These data indicate a role of Nogo-A in neuronal stress response during experimental CM
    corecore