334 research outputs found

    Spin Fine Structure in Optically Excited Quantum Dot Molecules

    Full text link
    The interaction between spins in coupled quantum dots is revealed in distinct fine structure patterns in the measured optical spectra of InAs/GaAs double quantum dot molecules containing zero, one, or two excess holes. The fine structure is explained well in terms of a uniquely molecular interplay of spin exchange interactions, Pauli exclusion and orbital tunneling. This knowledge is critical for converting quantum dot molecule tunneling into a means of optically coupling not just orbitals, but spins.Comment: 10 pages, 7 figures, added material, (published

    Optical Spin Initialization and Non-Destructive Measurement in a Quantum Dot Molecule

    Full text link
    The spin of an electron in a self-assembled InAs/GaAs quantum dot molecule is optically prepared and measured through the trion triplet states. A longitudinal magnetic field is used to tune two of the trion states into resonance, forming a superposition state through asymmetric spin exchange. As a result, spin-flip Raman transitions can be used for optical spin initialization, while separate trion states enable cycling transitions for non-destructive measurement. With two-laser transmission spectroscopy we demonstrate both operations simultaneously, something not previously accomplished in a single quantum dot.Comment: Accepted for publication in Phys. Rev. Let

    Photoluminescence Spectroscopy of the Molecular Biexciton in Vertically Stacked Quantum Dot Pairs

    Full text link
    We present photoluminescence studies of the molecular neutral biexciton-exciton spectra of individual vertically stacked InAs/GaAs quantum dot pairs. We tune either the hole or the electron levels of the two dots into tunneling resonances. The spectra are described well within a few-level, few-particle molecular model. Their properties can be modified broadly by an electric field and by structural design, which makes them highly attractive for controlling nonlinear optical properties.Comment: 4 pages, 5 figures, (v2, revision based on reviewers comments, published

    Measuring Temperature Gradients over Nanometer Length Scales

    Full text link
    When a quantum dot is subjected to a thermal gradient, the temperature of electrons entering the dot can be determined from the dot's thermocurrent if the conductance spectrum and background temperature are known. We demonstrate this technique by measuring the temperature difference across a 15 nm quantum dot embedded in a nanowire. This technique can be used when the dot's energy states are separated by many kT and will enable future quantitative investigations of electron-phonon interaction, nonlinear thermoelectric effects, and the effciency of thermoelectric energy conversion in quantum dots.Comment: 6 pages, 5 figure

    Electrically tunable g-factors in quantum dot molecular spin states

    Full text link
    We present a magneto-photoluminescence study of individual vertically stacked InAs/GaAs quantum dot pairs separated by thin tunnel barriers. As an applied electric field tunes the relative energies of the two dots, we observe a strong resonant increase or decrease in the g-factors of different spin states that have molecular wavefunctions distributed over both quantum dots. We propose a phenomenological model for the change in g-factor based on resonant changes in the amplitude of the wavefunction in the barrier due to the formation of bonding and antibonding orbitals.Comment: 5 pages, 5 figures, Accepted by Phys. Rev. Lett. New version reflects response to referee comment

    Sequential and co-tunneling behavior in the temperature-dependent thermopower of few-electron quantum dots

    Full text link
    We have studied the temperature dependent thermopower of gate-defined, lateral quantum dots in the Coulomb blockade regime using an electron heating technique. The line shape of the thermopower oscillations depends strongly on the contributing tunneling processes. Between 1.5 K and 40 mK a crossover from a pure sawtooth- to an intermitted sawtooth-like line shape is observed. The latter is attributed to the increasing dominance of cotunneling processes in the Coulomb blockade regime at low temperatures.Comment: 4 pages, 4 figures, submitted to Phys. Rev.

    Influence of light radiation on the activity of manganese peroxodase

    Get PDF

    Optically-controlled single-qubit rotations in self-assembled InAs quantum dots

    Full text link
    We present a theory of the optical control of the spin of an electron in an InAs quantum dot. We show how two Raman-detuned laser pulses can be used to obtain arbitrary single-qubit rotations via the excitation of an intermediate trion state. Our theory takes into account a finite in-plane hole gg-factor and hole-mixing. We show that such rotations can be performed to high fidelities with pulses lasting a few tens of picoseconds.Comment: 6 pages, 4 figures; minor changes, J-ref adde
    corecore