7,510 research outputs found

    Additional Siphonaptera Records From Small Mammals in the Central Upper Peninsula of Michigan

    Get PDF
    Fleas were collected from mammals during the period 1990-1992 in two upper peninsula counties. Identified specimens were compared to existing distribution records for both parasite and host. Only those records which are newly documented for county, upper peninsula or Michigan are listed. We report one previously unknown flea species and five new host records for Michigan. One host record is new for the upper peninsula. In addition, seven new host/parasite combinations are recorded for two central upper peninsula counties

    Interaction of iron oxide nanoparticles synthesized by laser target evaporation with polyacrylamide in composites and ferrogels

    Full text link
    Received: 05.06.2017; accepted: 20.06.2017;published: 14.07.2017.Iron oxide magnetic nanoparticles (MNPs) with average diameter 11.7 nm synthesized by laser target evaporation were used for the synthesis of composites and ferrogels based on polyacrylamide network. The chemical composition of MNPs corresponded to maghemite. It was shown that intact MNPs strongly interacted with polyacrylamide polymeric network, while the adsorption of electrostatic stabilizer on the surface of MNPs efficiently prevents such interaction. Synthesis of ferrogels was performed by the radical polymerization of acrylamide in electrostatically stabilized suspensions of MNPs in water. It was shown that the molecular structure, water uptake, and compression modulus can be controlled by the concentration of monomer taken in the synthesis

    ON THE MEASUREMENT OF A COSMOLOGICAL DIPOLE IN THE PHOTON NUMBER COUNTS OF GAMMA-RAY BURSTS

    Full text link
    If gamma-ray bursts are cosmological or in a halo distribution their properties are expected to be isotropic (at least to 1st order). However, our motion with respect to the burst parent population (whose proper frame is expected to be that of the Cosmic Microwave Background (CMB), or that of a static halo) will cause a dipole effect in the distribution of bursts and in their photon number counts (together termed a Compton-Getting effect). We argue that the photon number count information is necessary to distinguish a genuine Compton-Getting effect from some other anisotropy and to fully test the proper frame isotropy of the bursts. Using the 2B burst catalogue and the dipole determined from the CMB, we find the surprising result that although the number weighted distribution is consistent with isotropy, the fluence weighted dipole has a correlation with the CMB dipole that has a probability of occuring only 10% of the time for an isotropic photon distribution. Furthermore, the photon and number dipoles are inconsistent under the hypothesis of isotropy, at the 2-sigma level. This could be an indication that a non-negligible fraction of gamma-ray bursts originate in the local, anisotropic universe. (shortened Abstract)Comment: Accepted by ApJ. Self-unpacking (use csh), uuencoded, compressed Postscript, 16 pages + 4 Figures (5 files

    Siphonaptera Records and Host Associations From the Central and Eastern Upper Peninsula of Michigan

    Get PDF
    Fleas were collected from birds and mammals over a five year period in four upper peninsula counties. Identified specimens were compared to published records of distribution for the parasite species and its host species, and only those records which are new county distributions for host or parasite are listed. Four new host records for Michigan, four new flea distribution records for the upper peninsula, and 26 new county records are listed

    Omic research in termites: an overview and a roadmap

    Get PDF
    Many recent breakthroughs in our understanding of termite biology have been facilitated by omics research. Omic science seeks to collectively catalog, quantify and characterize pools of biological molecules that translate into structure, function and life processes of an organism. Biological molecules in this context include genomic DNA, messenger RNA, proteins and other biochemicals. Other permutations of omics that apply to termites include sociogenomics, which seeks to define social life in molecular terms (e.g., behavior, sociality, physiology, symbiosis, etc.) and digestomics, which seeks to define the collective pool of host and symbiont genes that collaborate to achieve high-efficiency lignocellulose digestion in the termite gut. This review covers a wide spectrum of termite omic studies from the past 15 years. Topics covered include a summary of terminology, the various kinds of omic efforts that have been undertaken, what has been revealed, and to a limited degree, what the results mean. Although recent omic efforts have contributed to a better understanding of many facets of termite and symbiont biology, and have created important new resources for many species, significant knowledge gaps still remain. Crossing these gaps can best be done by applying new omic resources within multi-dimensional (i.e., functional, translational and applied) research programs

    Denudation rates and geomorphic evolution of the Cape Mountains, determined by the analysis of the in situ-produced cosmogenic 10BE

    Get PDF
    Includes abstract.Includes bibliographical references.Southern Africa is host to a unique mountain system, the Cape Mountains, which includes the coastal Cape Fold Belt (CFB) and an inland Escarpment. Apatite fission track analysis has shown that this mountain system is an erosion feature, exhumed from beneath 2-7 km of overburden by large-scale denudation processes affecting the subcontinent during Gondwana break-up (ca. 140 – 65 Ma). Despite its antiquity and location on a passive continental margin, the ruggedness of the present-day topography of the Cape Mountains compares to that of the world’s active orogens. The coastal Cape Mountains are traversed by deeply-incised, meandering rivers that cut canyons through the most resistant quartzite ridges of these mountains, perpendicular to their structural grain inherited from the CFB. The evolution of this landscape is poorly understood, because little quantitative data exists on the denudation history of the Cape Mountains. This study presents the first in situ-produced cosmogenic 10Be inventories determined for quartz from catchment sediments and bedrock surfaces within the coastal Cape Mountains, with which to quantify denudation rates, exposure ages and the recent geomorphic evolution of these Cape Mountains. River sediments sampled from catchments within the Langeberg and Swartberg Ranges of the Western Cape, as well as bedrock from the Tradouw River traversing the Langeberg Range, were analysed. In addition, charcoal from alluvial material was collected for radiocarbon dating. Catchment-averaged denudation rates reported from these mountains range between 2.1 ± 0.3 and 6.9 ± 1.9 m·Myr-1. These are amongst the lowest reported rates globally, despite the rugged terrain of the mountain system. The spatial consistency between the low denudation rates suggests a landscape approaching geomorphic steady-state. This finding is best attributed to lithological control on denudation rates in a tectonically quiescent environment, and a relatively dry climate

    Massive gravity from descent equations

    Full text link
    Both massless and massive gravity are derived from descent equations (Wess-Zumino consistency conditions). The massive theory is a continuous deformation of the massless one.Comment: 8 pages, no figur

    Discovery of a very X-ray luminous galaxy cluster at z=0.89 in the WARPS survey

    Get PDF
    We report the discovery of the galaxy cluster ClJ1226.9+3332 in the Wide Angle ROSAT Pointed Survey (WARPS). At z=0.888 and L_X=1.1e45 erg/s (0.5-2.0 keV, h_0=0.5) ClJ1226.9+3332 is the most distant X-ray luminous cluster currently known. The mere existence of this system represents a huge problem for Omega_0=1 world models. At the modest (off-axis) resolution of the ROSAT PSPC observation in which the system was detected, ClJ1226.9+3332 appears relaxed; an off-axis HRI observation confirms this impression and rules out significant contamination from point sources. However, in moderately deep optical images (R and I band) the cluster exhibits signs of substructure in its apparent galaxy distribution. A first crude estimate of the velocity dispersion of the cluster galaxies based on six redshifts yields a high value of 1650 km/s, indicative of a very massive cluster and/or the presence of substructure along the line of sight. While a more accurate assessment of the dynamical state of this system requires much better data at both optical and X-ray wavelengths, the high mass of the cluster has already been unambiguously confirmed by a very strong detection of the Sunyaev-Zel'dovich effect in its direction (Joy et al. 2001). Using ClJ1226.9+3332 and ClJ0152.7-1357 (z=0.835), the second-most distant X-ray luminous cluster currently known and also a WARPS discovery, we obtain a first estimate of the cluster X-ray luminosity function at 0.8<z<1.4 and L_X>5e44 erg/s. Using the best currently available data, we find the comoving space density of very distant, massive clusters to be in excellent agreement with the value measured locally (z<0.3), and conclude that negative evolution is not required at these luminosities out to z~1. (truncated)Comment: accepted for publication in ApJ Letters, 6 pages, 2 figures, uses emulateapj.st
    corecore