1,717 research outputs found

    Microscopic origin of nonlinear non-affine deformation and stress overshoot in bulk metallic glasses

    Get PDF
    The atomic theory of elasticity of amorphous solids, based on the nonaffine response formalism, is extended into the nonlinear stress-strain regime by coupling with the underlying irreversible many-body dynamics. The latter is implemented in compact analytical form using a qualitative method for the many-body Smoluchowski equation. The resulting nonlinear stress-strain (constitutive) relation is very simple, with few fitting parameters, yet contains all the microscopic physics. The theory is successfully tested against experimental data on metallic glasses, and it is able to reproduce the ubiquitous feature of stress-strain overshoot upon varying temperature and shear rate. A clear atomic-level interpretation is provided for the stress overshoot, in terms of the competition between the elastic instability caused by nonaffine deformation of the glassy cage and the stress buildup due to viscous dissipation.Comment: Physical Review B Rapid Comm., in pres

    An algebra and conceptual model for semantic tagging of collaborative digital libraries

    Get PDF
    Cost-effective semantic description and annotation of shared knowledge resources has always been of great importance for digital libraries and large scale information systems in general. With the emergence of the Social Web and Web 2.0 technologies, a more effective semantic description and annotation, e.g., folksonomies, of digital library contents is envisioned to take place in collaborative and personalised environments. However, there is a lack of foundation and mathematical rigour for coping with contextualised management and retrieval of semantic annotations throughout their evolution as well as diversity in users and user communities. In this paper, we propose an ontological foundation for semantic annotations of digital libraries in terms of flexonomies. The proposed theoretical model relies on a high dimensional space with algebraic operators for contextualised access of semantic tags and annotations. The set of the proposed algebraic operators, however, is an adaptation of the set theoretic operators selection, projection, difference, intersection, union in database theory. To this extent, the proposed model is meant to lay the ontological foundation for a Digital Library 2.0 project in terms of geometric spaces rather than logic (description) based formalisms as a more efficient and scalable solution to the semantic annotation problem in large scale

    Controlled Assembly of CdSe Nanoplatelet Thin Films and Nanowires

    Get PDF
    We assemble semiconductor CdSe nanoplatelets (NPs) at the air/liquid interface into 2D monolayers several micrometers wide, distinctly displaying nematic order. We show that this configuration is the most favorable energetically and that the edge-to-edge distance between neighboring NPs can be tuned by ligand exchange without disrupting film topology and nanoparticle orientation. We explore the rich assembly phase space by using depletion interactions to direct the formation of 1D nanowires from stacks of NPs. The improved control and understanding of the assembly of semiconductor NPs offers opportunities for the development of cheaper optoelectronic devices that rely on 1D or 2D charge delocalization throughout the assembled monolayers and nanowires

    Debye vs. Casimir: controlling the structure of charged nanoparticles deposited on a substrate

    Get PDF
    Fine-tuning the interactions between particles can allow one to steer their collective behaviour and structure. A convenient way to achieve this is to use solvent criticality to control attraction, via critical Casimir forces, and to control repulsion via the Debye screening of electrostatic interactions. Herein, we develop a multiscale simulation framework and a method for controlled deposition of quantum dots to investigate how these interactions affect the structure of charged nanoparticles deposited on a substrate, altogether immersed in a binary liquid mixture intermixed with salt. We consider nanoparticles and substrates favouring the same component of the mixture and find that the critical Casimir interactions between the nanoparticles become drastically reduced at the substrate. In particular, the interactions can become a few kBT weaker and their decay length a few orders of magnitude smaller than in the bulk. At off-critical compositions, the decay length increases upon approaching criticality, as expected, but the interaction strength decreases. With molecular dynamics simulations and experiments, we reveal that the nanoparticles can self-assemble into crystalline clusters which form superstructures resembling cluster fluids and spinodal morphology. The simulations additionally predict the formation of fractal-like nanoparticle gels and bicontinuous phases. Our results demonstrate that charged nanoparticles in a salty binary liquid mixture provide exciting opportunities to study the formation of complex structures experimentally and theoretically, which may lead to applications in optoelectronics and photonics

    Assembling quantum dots via critical Casimir forces

    Get PDF
    AbstractProgrammed assembly of colloidal inorganic nanocrystal superstructures is crucial for the realization of future artificial solids as well as present optoelectronic applications. Here, we present a new way to assemble quantum dots reversibly using binary solvents. By tuning the temperature and composition of the binary solvent mixture, we achieve reversible aggregation of nanocrystals in solution induced by critical Casimir forces. We study the temperature-sensitive quantum-dot assembly with dynamic light scattering. We show that careful screening of the electrostatic repulsion by adding salt provides a further parameter to tune the reversible assembly

    Assembling quantum dots via critical Casimir forces

    Get PDF
    Programmed assembly of colloidal inorganic nanocrystal superstructures is crucial for the realization of future artificial solids as well as present optoelectronic applications. Here, we present a new way to assemble quantum dots reversibly using binary solvents. By tuning the temperature and composition of the binary solvent mixture, we achieve reversible aggregation of nanocrystals in solution induced by critical Casimir forces. We study the temperature-sensitive quantum-dot assembly with dynamic light scattering. We show that careful screening of the electrostatic repulsion by adding salt provides a further parameter to tune the reversible assembly

    Identification of key effects causing weak performance of allergen analysis in processed food matrices

    Get PDF
    The weaker performance of generally used analytical methods for allergen analysis in processed foods can be connected to protein denaturation. To understand the nature of protein denaturation processes, experimental but realistic model matrices (corn starch based mixture, hydrated dough, and heat treated cookies) were developed that contain a defined amount of milk, egg, soy, and wheat proteins individually or in combination. The protein subunit composition was investigated in every processing phase, i.e. after mixing, dough formation, and baking. SDS-PAGE measurements were carried out to monitor the protein distribution of sample food matrices in non-reducing and reducing gels. The results clearly show that the highly decreased protein solubility is caused by denaturation, aggregation, or complex formation, which are the most significant factors in poorer analytical performances. Solubility can only partly be improved with the application of reducing agents or surfactants, and the rate of improvement is depending on the proteins and the matrices

    Development of reverse-transcription PCR techniques to analyse the density and sex ratio of gametocytes in genetically diverse Plasmodium chabaudi infections

    Get PDF
    We have developed cross-genotype and genotype-specific quantitative reverse-transcription PCR (qRT-PCR) assays to detect and quantify the number of parasites, transmission stages (gametocytes) and male gametocytes in blood stage Plasmodium chabaudi infections. Our cross-genotype assays are reliable, repeatable and generate counts that correlate strongly (R(2)s > 90%) with counts expected from blood smears. Our genotype-specific assays can distinguish and quantify different stages of genetically distinct parasite clones (genotypes) in mixed infections and are as sensitive as our cross-genotype assays. Using these assays we show that gametocyte density and gametocyte sex ratios vary during infections for two genetically distinct parasite lines (genotypes) and present the first data to reveal how sex ratio is affected when each genotype experiences competition in mixed-genotype infections. Successful infection of mosquito vectors depends on both gametocyte density and their sex ratio and we discuss the implications of competition in genetically diverse infections for transmission success

    Cognitive and psychomotor responses to high-altitude exposure in sea level and high-altitude residents of Ecuador

    Get PDF
    Background High-altitude inhabitants have cardiovascular and respiratory adaptations that are advantageous for high-altitude living, but they may have impaired cognitive function. This study evaluated the influence of altitude of residence on cognitive and psychomotor function upon acute exposure to very high altitude. Findings Ecuadorians (31 residing at 0–1,500 m [LOW], 78 from 1,501–3,000 m [MOD], and 23 living \u3e3,000 m [HIGH]) were tested upon their arrival to a hut at 4,860 m on Mount Chimborazo. Cognitive/psychomotor measurements included a go-no-go test (responding to a non-visual stimulus), a verbal fluency test (verbalizing a series of words specific to a particular category), and a hand movement test (rapidly repeating a series of hand positions). Mean differences between the three altitude groups on these cognitive/psychomotor tests were evaluated with one-way ANOVA. There were no significant differences (p = 0.168) between LOW, MOD, and HIGH for the verbal fluency test. However, the go-no-go test was significantly lower (p \u3c 0.001) in the HIGH group (8.8 ± 1.40 correct responses) than the LOW (9.8 ± 0.61) or MOD (9.8 ± 0.55) groups, and both MOD (97.9 ± 31.2) and HIGH (83.5 ± 26.7) groups completed fewer correct hand movements than the LOW (136.6 ± 37.9) subjects (p \u3c 0.001). Conclusions Based on this field study, high-altitude residents appear to have some impaired cognitive function suggesting the possibility of maladaptation to long-term exposure to hypobaric hypoxia
    corecore