18 research outputs found

    Integrin β3 Crosstalk with VEGFR Accommodating Tyrosine Phosphorylation as a Regulatory Switch

    Get PDF
    Integrins mediate cell adhesion, migration, and survival by connecting intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the importance of the interaction between β3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. Here we present in vitro evidence of the direct association between the cytoplasmic tails (CTs) of β3 and VEGFR2. Specifically, the membrane-proximal motif around 801YLSI in VEGFR2 mediates its binding to non-phosphorylated β3CT, accommodating an ι-helical turn in integrin bound conformation. We also show that Y747 phosphorylation of β3 enhances the above interaction. To demonstrate the importance of β3 phosphorylation in endothelial cell functions, we synthesized β3CT-mimicking Y747 phosphorylated and unphosphorylated membrane permeable peptides. We show that a peptide containing phospho-Y747 but not F747 significantly inhibits VEGF-induced signaling and angiogenesis. Moreover, phospho-Y747 peptide exhibits inhibitory effect only in WT but not in β3 integrin knock-out or β3 integrin knock-in cells expressing β3 with two tyrosines substituted for phenylalanines, demonstrating its specificity. Importantly, these peptides have no effect on fibroblast growth factor receptor signaling. Collectively these data provide novel mechanistic insights into phosphorylation dependent cross-talk between integrin and VEGFR2

    Green fluorescent protein (GFP) tagged to the cytoplasmic tail of alphaIIb or beta3 allows the expression of a fully functional integrin alphaIIb(beta3): effect of beta3GFP on alphaIIb(beta3) ligand binding.

    No full text
    Using green fluorescent protein (GFP) as an autofluorescent tag, we report the first successful visualization of a beta3 integrin in a living cell. GFP fused in frame to the cytoplasmic tail of either alphaIIb or beta3 allowed normal expression, heterodimerization, processing and surface exposure of alphaIIbGFPbeta3 and alphaIIb(beta3)GFP receptors in Chinese hamster ovary (CHO) cells. Direct microscopic observation of the autofluorescent cells in suspension following antibody-induced alphaIIb(beta3) capping revealed an intense autofluorescent cap corresponding to unlabelled immunoclustered GFP-tagged alphaIIb(beta3). GFP-tagged alphaIIbbeta3 receptors mediated fibrinogen-dependent cell adhesion, were readily detectable in focal adhesions of unstained living cells and triggered p125(FAK) tyrosine phosphorylation similar to wild-type alphaIIb(beta3) (where FAK corresponds to focal adhesion kinase). However, GFP tagged to beta3, but not to alphaIIb, induced spontaneous CHO cell aggregation in the presence of soluble fibrinogen, as well as binding of the fibrinogen mimetic monoclonal antibody PAC1 in the absence of alphaIIb(beta3) receptor activation. Time-lapse imaging of living transfectants revealed a characteristic redistribution of GFP-tagged alphaIIb(beta3) during the early stages of cell attachment and spreading, starting with alphaIIb(beta3) clustering at the rim of the cell contact area, that gradually overlapped with the boundary of the attached cell, and, with the onset of cell spreading, to a reorganization of alphaIIb(beta3) in focal adhesions. Taken together, our results demonstrate that (1) fusion of GFP to the cytoplasmic tail of either alphaIIb or beta3 integrin subunits allows normal cell surface expression of a functional receptor, and (2) structural modification of the beta3 integrin cytoplasmic tail, rather than the alphaIIb subunit, plays a major role in alphaIIb(beta3) affinity modulation. With the successful direct visualization of functional alphaIIb(beta3) receptors in living cells, the generation of autofluorescent integrins in transgenic animals will become possible, allowing new approaches to study the dynamics of integrin functions

    An improved PDE6D inhibitor combines with Sildenafil to inhibit KRAS-mutant cancer cell growth

    Get PDF
    peer reviewedThe trafficking chaperone PDE6D (or PDEδ) was proposed as a surrogate target for K-Ras, leading to the development of a series of inhibitors that block its prenyl binding pocket. These inhibitors suffered from low solubility and suspected off-target effects, preventing their clinical development. Here, we developed a highly soluble, low nanomolar PDE6D inhibitor (PDE6Di), Deltaflexin3, which has the lowest off-target activity as compared to three prominent reference compounds. Deltaflexin3 reduces Ras signaling and selectively decreases the growth of KRAS mutant and PDE6D-dependent cancer cells. We further show that PKG2-mediated phosphorylation of Ser181 lowers K-Ras binding to PDE6D. Thus, Deltaflexin3 combines with the approved PKG2 activator Sildenafil to more potently inhibit PDE6D/K-Ras binding, cancer cell proliferation, and microtumor growth. As observed previously, inhibition of Ras trafficking, signaling, and cancer cell proliferation remained overall modest. Our results suggest reevaluating PDE6D as a K-Ras surrogate target in cancer.3. Good health and well-bein

    L-plastin Ser5 phosphorylation in breast cancer cells and in vitro is mediated by RSK downstream of the ERK/MAPK pathway

    No full text
    Deregulated cell migration and invasion are hallmarks of metastatic cancer cells. Phosphorylation on residue Ser5 of the actin-bundling protein L-plastin activates L-plastin and has been reported to be crucial for invasion and metastasis. Here, we investigate signal transduction leading to L-plastin Ser5 phosphorylation using 4 human breast cancer cell lines. Whole-genome microarray analysis comparing cell lines with different invasive capacities and corresponding variations in L-plastin Ser5 phosphorylation level revealed that genes of the ERK/MAPK pathway are differentially expressed. It is noteworthy that in vitro kinase assays showed that ERK/MAPK pathway downstream ribosomal protein S6 kinases Îą-1 (RSK1) and Îą-3 (RSK2) are able to directly phosphorylate L-plastin on Ser5. Small interfering RNA- or short hairpin RNA-mediated knockdown and activation/inhibition studies followed by immunoblot analysis and computational modeling confirmed that ribosomal S6 kinase (RSK) is an essential activator of L-plastin. Migration and invasion assays showed that RSK knockdown led to a decrease of up to 30% of migration and invasion of MDA-MB-435S cells. Although the presence of L-plastin was not necessary for migration/invasion of these cells, immunofluorescence assays illustrated RSK-dependent recruitment of Ser5-phosphorylated L-plastin to migratory structures. Altogether, we provide evidence that the ERK/MAPK pathway is involved in L-plastin Ser5 phosphorylation in breast cancer cells with RSK1 and RSK2 kinases able to directly phosphorylate L-plastin residue Ser5
    corecore