15 research outputs found

    Visual memory profile in 22q11.2 microdeletion syndrome: are there differences in performance and neurobiological substrates between tasks linked to ventral and dorsal visual brain structures? A cross-sectional and longitudinal study

    Get PDF
    BACKGROUND: Children affected by the 22q11.2 deletion syndrome (22q11.2DS) have a specific neuropsychological profile with strengths and weaknesses in several cognitive domains. Specifically, previous evidence has shown that patients with 22q11.2DS have more difficulties memorizing faces and visual-object characteristics of stimuli. In contrast, they have better performance in visuo-spatial memory tasks. The first focus of this study was to replicate these results in a larger sample of patients affected with 22q11.2DS and using a range of memory tasks. Moreover, we analyzed if the deficits were related to brain morphology in the structures typically underlying these abilities (ventral and dorsal visual streams). Finally, since the longitudinal development of visual memory is not clearly characterized in 22q11.2DS, we investigated its evolution from childhood to adolescence. METHODS: Seventy-one patients with 22q11.2DS and 49 control individuals aged between 9 and 16 years completed the Benton Visual Retention Test (BVRT) and specific subtests assessing visual memory from the Children’s Memory Scale (CMS). The BVRT was used to compute spatial and object memory errors. For the CMS, specific subtests were classified into ventral, dorsal, and mixed subtests. Longitudinal data were obtained from a subset of 26 patients and 22 control individuals. RESULTS: Cross-sectional results showed that patients with 22q11.2DS were impaired in all visual memory measures, with stronger deficits in visual-object memory and memory of faces, compared to visuo-spatial memory. No correlations between morphological brain impairments and visual memory were found in patients with 22q11.2DS. Longitudinal findings revealed that participants with 22q11.2DS made more object memory errors than spatial memory errors at baseline. This difference was no longer significant at follow-up. CONCLUSIONS: Individuals with 22q11.2DS have impairments in visual memory abilities, with more pronounced difficulties in memorizing faces and visual-object characteristics. From childhood to adolescence, the visual cognitive profile of patients with 22q11.2DS seems globally stable even though some processes show an evolution with time. We hope that our results will help clinicians and caregivers to better understand the memory difficulties of young individuals with 22q11.2DS. This has a particular importance at school to facilitate recommendations concerning intervention strategies for these young patients

    Adolescence is the starting point of sex-dichotomous COMT genetic effects

    No full text
    The catechol-o-methyltransferase (COMT) genetic variations produce pleiotropic behavioral/neuroanatomical effects. Some of these effects may vary among sexes. However, the developmental trajectories of COMT-by-sex interactions are unclear. Here we found that extreme COMT reduction, in both humans (22q11.2 deletion syndrome COMT Met) and mice (COMT-/-), was associated to cortical thinning only after puberty and only in females. Molecular biomarkers, such as tyrosine hydroxylase, Akt and neuronal/cellular counting, confirmed that COMT-by-sex divergent effects started to appear at the cortical level during puberty. These biochemical differences were absent in infancy. Finally, developmental cognitive assessment in 22q11DS and COMT knockout mice established that COMT-by-sex-dichotomous effects in executive functions were already apparent in adolescence. These findings uncover that genetic variations severely reducing COMT result in detrimental cortical and cognitive development selectively in females after their sexual maturity. This highlights the importance of taking into account the combined effect of genetics, sex and developmental stage

    Quantifying indices of short- and long-range white matter connectivity at each cortical vertex

    No full text
    Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS) and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders

    Quantifying indices of short- and long-range white matter connectivity at each cortical vertex.

    Get PDF
    Several neurodevelopmental diseases are characterized by impairments in cortical morphology along with altered white matter connectivity. However, the relationship between these two measures is not yet clear. In this study, we propose a novel methodology to compute and display metrics of white matter connectivity at each cortical point. After co-registering the extremities of the tractography streamlines with the cortical surface, we computed two measures of connectivity at each cortical vertex: the mean tracts' length, and the proportion of short- and long-range connections. The proposed measures were tested in a clinical sample of 62 patients with 22q11.2 deletion syndrome (22q11DS) and 57 typically developing individuals. Using these novel measures, we achieved a fine-grained visualization of the white matter connectivity patterns at each vertex of the cortical surface. We observed an intriguing pattern of both increased and decreased short- and long-range connectivity in 22q11DS, that provides novel information about the nature and topology of white matter alterations in the syndrome. We argue that the method presented in this study opens avenues for additional analyses of the relationship between cortical properties and patterns of underlying structural connectivity, which will help clarifying the intrinsic mechanisms that lead to altered brain structure in neurodevelopmental disorders
    corecore