89 research outputs found

    Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy

    Get PDF
    Background: Progressive multifocal leukoencephalopathy (PML) was reported to have developed in three patients treated with natalizumab. We conducted an evaluation to determine whether PML had developed in any other treated patients. Methods: We invited patients who had participated in clinical trials in which they received recent or long-term treatment with natalizumab for multiple sclerosis, Crohn's disease, or rheumatoid arthritis to participate. The clinical history, physical examination, brain magnetic resonance imaging (MRI), and testing of cerebrospinal fluid for JC virus DNA were used by an expert panel to evaluate patients for PML. We estimated the risk of PML in patients who completed at least a clinical examination for PML or had an MRI. Results: Of 3417 patients who had recently received natalizumab while participating in clinical trials, 3116 (91 percent) who were exposed to a mean of 17.9 monthly doses underwent evaluation for PML. Of these, 44 patients were referred to the expert panel because of clinical findings of possible PML, abnormalities on MRI, or a high plasma viral load of JC virus. No patient had detectable JC virus DNA in the cerebrospinal fluid. PML was ruled out in 43 of the 44 patients, but it could not be ruled out in one patient who had multiple sclerosis and progression of neurologic disease because data on cerebrospinal fluid testing and follow-up MRI were not available. Only the three previously reported cases of PML were confirmed (1.0 per 1000 treated patients; 95 percent confidence interval, 0.2 to 2.8 per 1000). Conclusions: A detailed review of possible cases of PML in patients exposed to natalizumab found no new cases and suggested a risk of PML of roughly 1 in 1000 patients treated with natalizumab for a mean of 17.9 months. The risk associated with longer treatment is not known

    Co-occurrence of two cases of progressive multifocal leukoencephalopathy in a natalizumab ``infusion group''

    Get PDF
    We observed two cases of progressive multifocal leukoencephalopathy (PML) that occurred in the same infusion group. The group consisted of four patients with relapsing-remitting multiple sclerosis (RRMS) who had been treated with natalizumab (NAT) in the same medical practice for more than four years at the same times and in the same room, raising concerns about viral transmission between members of the infusion group. DNA amplification and sequence comparison of the non-coding control region (NCCR) of JC virus (JCV) present in cerebrospinal fluid (CSF) samples from PML patients #1 and #2 revealed that the amplified JCV sequences differed from the JCV archetype. The NCRR of the viral DNA was unique to each patient, arguing against the possibility of viral transmission between patients. Statistical considerations predict that similar co-occurrences of PML are likely to happen in the future

    Co-occurrence of two cases of progressive multifocal leukoencephalopathy in a natalizumab ``infusion group''

    Get PDF
    We observed two cases of progressive multifocal leukoencephalopathy (PML) that occurred in the same infusion group. The group consisted of four patients with relapsing-remitting multiple sclerosis (RRMS) who had been treated with natalizumab (NAT) in the same medical practice for more than four years at the same times and in the same room, raising concerns about viral transmission between members of the infusion group. DNA amplification and sequence comparison of the non-coding control region (NCCR) of JC virus (JCV) present in cerebrospinal fluid (CSF) samples from PML patients #1 and #2 revealed that the amplified JCV sequences differed from the JCV archetype. The NCRR of the viral DNA was unique to each patient, arguing against the possibility of viral transmission between patients. Statistical considerations predict that similar co-occurrences of PML are likely to happen in the future

    Changes in JC virus-specific T cell responses during natalizumab treatment and in natalizumab-associated progressive multifocal leukoencephalopathy

    Get PDF
    Progressive multifocal leukoencephalopathy (PML) induced by JC virus (JCV) is a risk for natalizumab-treated multiple sclerosis (MS) patients. Here we characterize the JCV-specific T cell responses in healthy donors and natalizumab-treated MS patients to reveal functional differences that may account for the development of natalizumab-associated PML. CD4 and CD8 T cell responses specific for all JCV proteins were readily identified in MS patients and healthy volunteers. The magnitude and quality of responses to JCV and cytomegalovirus (CMV) did not change from baseline through several months of natalizumab therapy. However, the frequency of T cells producing IL-10 upon mitogenic stimulation transiently increased after the first dose. In addition, MS patients with natalizumab-associated PML were distinguished from all other subjects in that they either had no detectable JCV-specific T cell response or had JCV-specific CD4 T cell responses uniquely dominated by IL-10 production. Additionally, IL-10 levels were higher in the CSF of individuals with recently diagnosed PML. Thus, natalizumab-treated MS patients with PML have absent or aberrant JCV-specific T cell responses compared with non-PML patients, and changes in T cell-mediated control of JCV replication may be a risk factor for developing PML. Our data suggest further approaches to improved monitoring, treatment and prevention of PML in natalizumab-treated patients

    Amp-PCR: Combining a Random Unbiased Phi29-Amplification with a Specific Real-Time PCR, Performed in One Tube to Increase PCR Sensitivity

    Get PDF
    In clinical situations where a diagnostic real-time PCR assay is not sensitive enough, leading to low or falsely negative results, or where detection earlier in a disease progression would benefit the patient, an unbiased pre-amplification prior to the real-time PCR could be beneficial. In Amp-PCR, an unbiased random Phi29 pre-amplification is combined with a specific real-time PCR reaction. The two reactions are separated physically by a wax-layer (AmpliWax®) and are run in sequel in the same sealed tube. Amp-PCR can increase the specific PCR signal at least 100×106-fold and make it possible to detect positive samples normally under the detection limit of the specific real-time PCR. The risk of contamination is eliminated and Amp-PCR could replace nested-PCR in situations where increased sensitivity is needed e.g. in routine PCR diagnostic analysis. We show Amp-PCR to work on clinical samples containing circular and linear viral dsDNA genomes, but can work well on DNA of any origin, both from non-cellular (virus) and cellular sources (bacteria, archae, eukaryotes)

    Bis(pyridine)boronium salts. Syntheses and formation kinetics

    No full text
    • …
    corecore