506 research outputs found

    Effects of intensity of repetitive acoustic stimuli on neural adaptation in the ventral cochlear nucleus of the rat

    Get PDF
    To study neural adaptation as a function of stimulus intensity, auditory near-field evoked potentials were recorded from the ventral cochlear nucleus in awake Long Evans rats. Responses to 250-ms trains of repetitive clicks (pulse rates ranging from 100 to 1000 pulses per second) were collected at stimulus intensities of 5, 10, 30, 50 and 70dB SPL. The amplitude of the first negative (N1) component of the average evoked potentials to individual pulses in the train was measured by using a subtraction method. The N1 responses were normalized with respect to the highest cochlear nucleus potential observed in the train, and then plotted as a function of click position in the train. As expected, the general trend of the curves was an exponential decay reaching a plateau more or less rapidly as a function of both intensity and rate of stimulation. Fitting these curves with exponential decay equations revealed that the rapid time constant decreased for increasing stimulus intensities whereas the short-term time constant is relatively independent of intensity. The amount of adaptation (expressed as the ratio of the plateau to the first peak amplitude) was substantially less prominent at low intensities (5-10dB SPL) and low rates (100-200 pulses per second) than at higher intensities and high rates. These results indicate that adaptation patterns obtained in the ventral cochlear nucleus by using near-field evoked potentials exhibit properties comparable to those already present at the level of the auditory nerv

    A haptic guidance tool for CT-directed percutaneous interventions

    Get PDF

    The Insula of Reil Revisited: Multiarchitectonic Organization in Macaque Monkeys

    Get PDF
    The insula of Reil represents a large cortical territory buried in the depth of the lateral sulcus and subdivided into 3 major cytoarchitectonic domains: agranular, dysgranular, and granular. The present study aimed at reinvestigating the architectonic organization of the monkey's insula using multiple immunohistochemical stainings (parvalbumin, PV; nonphosphorylated neurofilament protein, with SMI-32; acetylcholinesterase, AChE) in addition to Nissl and myelin. According to changes in density and laminar distributions of the neurochemical markers, several zones were defined and related to 8 cytoarchitectonic subdivisions (Ia1-Ia2/Id1-Id3/Ig1-Ig2/G). Comparison of the different patterns of staining on unfolded maps of the insula revealed: 1) parallel ventral to dorsal gradients of increasing myelin, PV- and AChE-containing fibers in middle layers, and of SMI-32 pyramidal neurons in supragranular layers, with merging of dorsal and ventral high-density bands in posterior insula, 2) definition of an insula "proper” restricted to two-thirds of the "morphological” insula (as bounded by the limiting sulcus) and characterized most notably by lower PV, and 3) the insula proper is bordered along its dorsal, posterodorsal, and posteroventral margin by a strip of cortex extending beyond the limits of the morphological insula and continuous architectonically with frontoparietal and temporal opercular areas related to gustatory, somatosensory, and auditory modalitie

    The projection from auditory cortex to cochlear nucleus in guinea pigs: an in vivo anatomical and in vitro electrophysiological study

    Get PDF
    Previous anatomical experiments have demonstrated the existence of a direct, bilateral projection from the auditory cortex (AC) to the cochlear nucleus (CN). However, the precise relationship between the origin of the projection in the AC and the distribution of axon terminals in the CN is not known. Moreover, the influence of this projection on CN principal cells has not been studied before. The aim of the present study was two-fold. First, to extend the anatomical data by tracing anterogradely the distribution of cortical axons in the CN by means of restricted injections of biotinylated dextran amine (BDA) in physiologically characterized sites in the AC. Second, in an in vitro isolated whole brain preparation (IWB), to assess the effect of electrical stimulation of the AC on CN principal cells from which intracellular recordings were derived. BDA injections in the tonotopically organized primary auditory cortex and dorsocaudal auditory field at high and low best frequency (BF) sites resulted in a consistent axonal labeling in the ipsilateral CN of all injected animals. In addition, fewer labeled terminals were observed in the contralateral CN, but only in the animals subjected to injections in low BF region. The axon terminal fields consisting of boutons en passant or terminaux were found in the superficial granule cell layer and, to a smaller extent, in the three CN subdivisions. No axonal labeling was seen in the CN as result of BDA injection in the secondary auditory area (dorsocaudal belt). In the IWB, the effects of ipsilateral AC stimulation were tested in a population of 52 intracellulary recorded and stained CN principal neurons, distributed in the three CN subdivisions. Stimulation of the AC evoked slow late excitatory postsynaptic potentials (EPSPs) in only two cells located in the dorsal CN. The EPSPs were induced in a giant and a pyramidal cell at latencies of 20ms and 33ms, respectively, suggesting involvement of polysynaptic circuits. These findings are consistent with anatomical data showing sparse projections from the AC to the CN and indicate a limited modulatory action of the AC on CN principal cell

    Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum

    Get PDF
    We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene-Eocene Thermal Maximum (PETM) in a borehole at Ancora, New Jersey. Aside from previously-described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 μm long and hexaoctahedral prisms up to 1.4 μm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that the development of a thick suboxic zone with high iron bioavailability – a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming – drove diversification of magnetite-forming organisms, likely including eukaryotes
    • …
    corecore