23 research outputs found

    Revealing the deposition of macrophytes transported offshore: Evidence of their long-distance dispersal and seasonal aggregation to the deep sea

    Get PDF
    The role of coastal macrophyte beds as a carbon sink is under debate. Various studies have provided global estimates of the carbon sequestration and stocks of macrophyte beds; however, the final fate of macrophyte debris exported from coastal beds remains uncertain, and must be determined in order to fully clarify the role of coastal vegetation as a carbon sink. Here we conducted bottom-trawl surveys to investigate the extensive and seasonal aggregation of exported macrophytes on the continental shelf and slope seafloor (40-1,800 m). Sunken macrophytes showed a clear seasonal trend with highest biomasses in summer. This was mainly caused by the most collected macrophyte species Sargassum horneri. Furthermore, we used numerical simulations to verify the link between sea-surface hydrographic condition and seafloor distribution of sunken macrophytes. Our results showed that S. horneri accumulated beneath the Kuroshio Extension current, which is the western boundary current of the North Pacific subtropical gyre. Overall, floating macrophytes that became transported offshore by a stable sea-surface current, such as the western boundary current, constitute an organic carbon pathway from coastal waters to the deep sea. Our findings suggest that these buoyant macrophytes can act as a biological pump to enhance oceanic carbon sequestration

    Lack of anti-predator recognition in a marine isopod under the threat of an invasive predatory crab

    Get PDF
    The prey naivete hypothesis suggests that the failure of prey to recognize novel predators as a threat is caused by a lack of anti-predator adaptations. We tested this hypothesis in a unique natural setting, where the isopod Idotea balthica encountered the rapidly spreading invasive crab, Rhithropanopeus harrissii. Earlier research had indicated high mortality of the isopods during exposure to R. harrissii. The isopod exerted no co-evolutionary history with any littoral crabs and thus the strong impact could be caused by lack of pre-adaptations towards the new predator species. We tested this hypothesis by studying the anti-predator responses of the isopods with water-born cues of R. harrissii and of the native predatory fish Perca fluviatilis. Compared to control water, the isopods lowered their activity when exposed to the fish cue. Instead crab cue did not induce anti-predator behaviour. We also tested the hypothesis that mortality caused by novel predator, similar to predation by P. fluviatilis, would result in differential selection for the two sexes and contribute to the evolution of personalities. However, we found no differences in anti-predator behaviour nor in mortality between the sexes or personalities of the isopods. The outcomes reveal an interesting evolutionary scenario, where predation by a local predator induce soft selection on prey characteristics, but an invasive species cause hard selection without differentiating between prey individuals. Our study-conducted in the dawn of the population outbreak of R. harrissii-provides an excellent reference point for studies resolving the evolutionary impacts of invasive predators on naive prey

    Species-speciWc defense strategies of vegetative versus reproductive blades of the PaciWc kelps Lessonia nigrescens and Macrocystis integrifolia

    Get PDF
    Chemical defense is assumed to be costly and therefore algae should allocate defense investments in a way to reduce costs and optimize their overall fitness. Thus, lifetime expectation of particular tissues and their contribution to the fitness of the alga may affect defense allocation. Two brown algae common to the SE Pacific coasts, Lessonia nigrescens Bory and Macrocystis integrifolia Bory, feature important ontogenetic differences in the development of reproductive structures; in L. nigrescens blade tissues pass from a vegetative stage to a reproductive stage, while in M. integrifolia reproductive and vegetative functions are spatially separated on different blades. We hypothesized that vegetative blades of L. nigrescens with important future functions are more (or equally) defended than reproductive blades, whereas in M. integrifolia defense should be mainly allocated to reproductive blades (sporophylls), which are considered to make a higher contribution to fitness. Herein, within-plant variation in susceptibility of reproductive and vegetative tissues to herbivory and in allocation of phlorotannins (phenolics) and N-compounds was compared. The results show that phlorotannin and N-concentrations were higher in reproductive blade tissues for both investigated algae. However, preferences by amphipod grazers (Parhyalella penai) for either tissue type differed between the two algal species. Fresh reproductive tissue of L. nigrescens was more consumed than vegetative tissue, while the reverse was found in M. integrifolia, thus confirming the original hypothesis. This suggests that future fitness function might indeed be a useful predictor of anti-herbivore defense in large, perennial kelps. Results from feeding assays with artificial pellets that were made with air-dried material and extract-treated Ulva powder indicated that defenses in live algae are probably not based on chemicals that can be extracted or remain intact after air-drying and grinding up algal tissues. Instead, anti-herbivore defense against amphipod mesograzers seems to depend on structural traits of living algae

    Induction of defences and within-plant variation on palatability in two brown algae from the northern-central coast of Chile: effects of mesograzers and UV radiation.

    Get PDF
    Macroalgae possess different defense mechanisms in response to herbivory. Some species produce anti-herbivore secondary metabolites, but production of these substances can be costly. Therefore, algae may produce defensive metabolites only in response to herbivory (inducible defense) or defend particular parts of the alga differentially (within-alga variation). In the present study, we examined whether two species of brown algae from the SE-Pacific show evidence of inducible chemical defense (non-polar compounds) or within-alga variation of defense, which we estimated in form of palatability of differently treated algae to amphipod grazers (with live algae and agar-based food containing non-polar algal extracts). In Glossophora kunthii (C. Agardh) J. Agardh, we observed an increase in palatability after algae were acclimated for 12 days without grazers. Subsequent addition of grazers for 12 days then resulted in a reduction of palatability indicating the existence of inducible defense. After removal of grazers for 12 days, these induced effects again disappeared. The reaction of G. kunthii was triggered even by the mere presence of grazers, which suggests that this alga can respond to waterborne cues by reducing palatability. Effects were only found for agar-based food containing non-polar extracts, but not for live algae, suggesting that some parts of the algae are undefended. Our second experiment on within-alga variation confirmed that only apical (growth region) and basal parts (near the holdfast region) of G. kunthii are defended against herbivores. For the second species, Macrocystis integrifolia Bory, the first experiment revealed no induction of defense, while the second experiment on within-alga variation showed that amphipods avoided basal parts and in particular stipes of M. integrifolia but only in live algae. Although both studied algal species differed substantially in their defensive strategies, their reaction was independent of the presence or absence of UV radiation. Thus, it appears that UV effects play only a minor role in anti-herbivore defense, which is in accordance with most previous studies

    Floating seaweeds and their communities

    No full text

    Low abundance of floating marine debris in the northern Baltic Sea

    No full text
    We determined the spatial and seasonal distribution of Floating Marine Debris (FMD) by visual ship surveys across the northern Baltic Sea between Finland and Sweden. FMD density was comparatively low, and we found the highest debris density close to major port cities. The seasonal variation in debris density was not pronounced although we observed more FMD items during the summer surveys. Plastic bags were the most common identifiable litter items, and we also found other consumer items (plastic bottles and cups). Styrofoam items suggest fishing or aquaculture activities as potential sea-based sources of FMD. These are the first data on FMD density in the Baltic Sea, and they are substantially lower than those reported for other coastal waters, which may be due to (i) lower human population densities, and (ii) higher environmental awareness in the Scandinavian countries
    corecore