8 research outputs found

    Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose

    No full text
    The objective of the study was to analyse Streptococcus mutans biofilms grown under different dietary conditions by using multifaceted methodological approaches to gain deeper insight into the cariogenic impact of carbohydrates. S. mutans biofilms were generated during a period of 24 h in the following media: Schaedler broth as a control medium containing endogenous glucose, Schaedler broth with an additional 5% sucrose, and Schaedler broth supplemented with 1% xylitol. The confocal laser scanning microscopy (CLSM)-based analyses of the microbial vitality, respiratory activity (5-cyano-2,3-ditolyl tetrazolium chloride, CTC) and production of extracellular polysaccharides (EPS) were performed separately in the inner, middle and outer biofilm layers. In addition to the microbiological sample testing, the glucose/sucrose consumption of the biofilm bacteria was quantified, and the expression of glucosyltransferases and other biofilm-associated genes was investigated. Xylitol exposure did not inhibit the viability of S. mutans biofilms, as monitored by the following experimental parameters: culture growth, vitality, CTC activity and EPS production. However, xylitol exposure caused a difference in gene expression compared to the control. GtfC was upregulated only in the presence of xylitol. Under xylitol exposure, gtfB was upregulated by a factor of 6, while under sucrose exposure, it was upregulated by a factor of three. Compared with glucose and xylitol, sucrose increased cell vitality in all biofilm layers. In all nutrient media, the intrinsic glucose was almost completely consumed by the cells of the S. mutans biofilm within 24 h. After 24 h of biofilm formation, the multiparametric measurements showed that xylitol in the presence of glucose caused predominantly genotypic differences but did not induce metabolic differences compared to the control. Thus, the availability of dietary carbohydrates in either a pure or combined form seems to affect the cariogenic potential of S. mutans biofilms

    Expression of the MtsA lipoprotein of Streptococcus agalactiae A909 is regulated by manganese and iron

    No full text
    Metal ion acquisition and homeostasis are essential for bacterial survival, growth and physiology. A family of metal ion, ABC-type import systems have been identified in Gram-positive bacteria, in which the solute-binding proteins are predicted to be membrane-anchored lipoproteins. The prediction that the MtsA protein of Streptococcus agalactiae A909 is a lipoprotein was confirmed. The expression of MtsA was co-ordinately regulated by the presence of both manganese and ferrous ions suggesting that MtsA may be involved in the uptake of both these ions. MtsA was shown to be expressed at levels of ferrous ions known to be present in amniotic fluid, a growth medium for S. agalactiae during neonatal infectio
    corecore