330 research outputs found
The Q-operator and Functional Relations of the Eight-vertex Model at Root-of-unity for odd N
Following Baxter's method of producing Q_{72}-operator, we construct the
Q-operator of the root-of-unity eight-vertex model for the crossing parameter
with odd where Q_{72} does not exist. We use this
new Q-operator to study the functional relations in the Fabricius-McCoy
comparison between the root-of-unity eight-vertex model and the superintegrable
N-state chiral Potts model. By the compatibility of the constructed Q-operator
with the structure of Baxter's eight-vertex (solid-on-solid) SOS model, we
verify the set of functional relations of the root-of-unity eight-vertex model
using the explicit form of the Q-operator and fusion weights of SOS model.Comment: Latex 28 page; Typos corrected, minor changes in presentation,
References added and updated-Journal versio
Duality and Symmetry in Chiral Potts Model
We discover an Ising-type duality in the general -state chiral Potts
model, which is the Kramers-Wannier duality of planar Ising model when N=2.
This duality relates the spectrum and eigenvectors of one chiral Potts model at
a low temperature (of small ) to those of another chiral Potts model at a
high temperature (of ). The -model and chiral Potts model
on the dual lattice are established alongside the dual chiral Potts models.
With the aid of this duality relation, we exact a precise relationship between
the Onsager-algebra symmetry of a homogeneous superintegrable chiral Potts
model and the -loop-algebra symmetry of its associated
spin- XXZ chain through the identification of their eigenstates.Comment: Latex 34 pages, 2 figures; Typos and misprints in Journal version are
corrected with minor changes in expression of some formula
On -model in Chiral Potts Model and Cyclic Representation of Quantum Group
We identify the precise relationship between the five-parameter
-family in the -state chiral Potts model and XXZ chains with
-cyclic representation. By studying the Yang-Baxter relation of the
six-vertex model, we discover an one-parameter family of -operators in terms
of the quantum group . When is odd, the -state
-model can be regarded as the XXZ chain of
cyclic representations with . The symmetry algebra of the
-model is described by the quantum affine algebra via the canonical representation. In general for an arbitrary
, we show that the XXZ chain with a -cyclic representation for
is equivalent to two copies of the same -state
-model.Comment: Latex 11 pages; Typos corrected, Minor changes for clearer
presentation, References added and updated-Journal versio
CHIP Expansions to Higher-Income Children in Three States: Profiles of Eligibility and Insurance Coverage
Summarizes findings on how changes in eligibility rules for children's public health insurance programs affected 2002-09 coverage rates and the number of uninsured children in Illinois, Pennsylvania, and Washington. Compares results by scope of reform
The Onsager Algebra Symmetry of -matrices in the Superintegrable Chiral Potts Model
We demonstrate that the -matrices in the superintegrable chiral
Potts model possess the Onsager algebra symmetry for their degenerate
eigenvalues. The Fabricius-McCoy comparison of functional relations of the
eight-vertex model for roots of unity and the superintegrable chiral Potts
model has been carefully analyzed by identifying equivalent terms in the
corresponding equations, by which we extract the conjectured relation of
-operators and all fusion matrices in the eight-vertex model corresponding
to the -relation in the chiral Potts model.Comment: Latex 21 pages; Typos added, References update
Fusion Operators in the Generalized -model and Root-of-unity Symmetry of the XXZ Spin Chain of Higher Spin
We construct the fusion operators in the generalized -model using
the fused -operators, and verify the fusion relations with the truncation
identity. The algebraic Bethe ansatz discussion is conducted on two special
classes of which include the superintegrable chiral Potts model.
We then perform the parallel discussion on the XXZ spin chain at roots of
unity, and demonstrate that the -loop-algebra symmetry exists for the
root-of-unity XXZ spin chain with a higher spin, where the evaluation
parameters for the symmetry algebra are identified by the explicit
Fabricius-McCoy current for the Bethe states. Parallels are also drawn to the
comparison with the superintegrable chiral Potts model.Comment: Latex 33 Pages; Typos and errors corrected, New improved version by
adding explanations for better presentation. Terminology in the content and
the title refined. References added and updated-Journal versio
Take-Up of Public Insurance and Crowd-out of Private Insurance Under Recent CHIP Expansions to Higher Income Children
We analyze the effects of states’ expansions of CHIP eligibility to children in higher income families during 2002-2009 on take-up of public coverage, crowd-out of private coverage, and rates of uninsurance. Our results indicate these expansions were associated with limited uptake of public coverage and only a two percentage point reduction in the uninsurance rate among these children. Because not all of the take-up of public insurance among eligible children is accounted for by children who transfer from being uninsured to having public insurance, our results suggest that there may be some crowd-out of private insurance coverage; the upper bound crowd-out rate we calculate is 46 percent.
A new Q-matrix in the Eight-Vertex Model
We construct a -matrix for the eight-vertex model at roots of unity for
crossing parameter with odd , a case for which the existing
constructions do not work. The new -matrix \Q depends as usual on the
spectral parameter and also on a free parameter . For \Q has the
standard properties. For , however, it does not commute with the
operator and not with itself for different values of the spectral
parameter. We show that the six-vertex limit of \Q(v,t=iK'/2) exists.Comment: 10 pages section on quasiperiodicity added, typo corrected, published
versio
Land Contract or Mortgage?
The use of land contracts in buying and selling farms is increasing in Iowa. The contract is basically different from the traditional deed and mortgage, and advantages and disadvantages should be weighed carefully
- …