533 research outputs found

    Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors

    Full text link
    We study the collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family. In phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly), the coexistence of two spin-density waves gives rise to additional collective modes besides the Goldstone modes due to spontaneous translation and rotation symmetry breaking. These modes strongly affect the charge and spin response functions. We discuss some experimental consequences for the Bechgaard salts.Comment: Final version (LaTex, 8 pages, no figure), to be published in Europhys. Let

    Two-Scale Annihilation

    Full text link
    The kinetics of single-species annihilation, A+A0A+A\to 0, is investigated in which each particle has a fixed velocity which may be either ±v\pm v with equal probability, and a finite diffusivity. In one dimension, the interplay between convection and diffusion leads to a decay of the density which is proportional to t3/4t^{-3/4}. At long times, the reactants organize into domains of right- and left-moving particles, with the typical distance between particles in a single domain growing as t3/4t^{3/4}, and the distance between domains growing as tt. The probability that an arbitrary particle reacts with its nthn^{\rm th} neighbor is found to decay as n5/2n^{-5/2} for same-velocity pairs and as n7/4n^{-7/4} for ++- pairs. These kinetic and spatial exponents and their interrelations are obtained by scaling arguments. Our predictions are in excellent agreement with numerical simulations.Comment: revtex, 5 pages, 5 figures, also available from http://arnold.uchicago.edu/~eb

    Next-to-leading order QCD corrections to W+W- production via vector-boson fusion

    Full text link
    Vector-boson fusion processes constitute an important class of reactions at hadron colliders, both for signals and backgrounds of new physics in the electroweak interactions. We consider what is commonly referred to as W+W- production via vector-boson fusion (with subsequent leptonic decay of the Ws), or, more precisely, e+ nu_e mu- nubar_mu + 2 jets production in proton-proton scattering, with all resonant and non-resonant Feynman diagrams and spin correlations of the final-state leptons included, in the phase-space regions which are dominated by t-channel electroweak-boson exchange. We compute the next-to-leading order QCD corrections to this process, at order alpha^6 alpha_s. The QCD corrections are modest, changing total cross sections by less than 10%. Remaining scale uncertainties are below 2%. A fully-flexible next-to-leading order partonic Monte Carlo program allows to demonstrate these features for cross sections within typical vector-boson-fusion acceptance cuts. Modest corrections are also found for distributions.Comment: 29 pages, 14 figure

    Flux quantization and superfluid weight in doped antiferromagnets

    Full text link
    Doped antiferromagnets, described by a t-t'-J model and a suitable 1/N expansion, exhibit a metallic phase-modulated antiferromagnetic ground state close to half-filling. Here we demonstrate that the energy of latter state is an even periodic function of the external magnetic flux threading the square lattice in an Aharonov-Bohm geometry. The period is equal to the flux quantum Φ0=2πc/q\Phi_{0}=2\pi\hbar c/q entering the Peierls phase factor of the hopping matrix elements. Thus flux quantization and a concomitant finite value of superfluid weight D_s occur along with metallic antiferromagnetism. We argue that in the context of the present effective model, whereby carriers are treated as hard-core bosons, the charge q in the associated flux quantum might be set equal to 2e. Finally, the superconducting transition temperature T_c is related to D_s linearly, in accordance to the generic Kosterlitz-Thouless type of transition in a two-dimensional system, signaling the coherence of the phase fluctuations of the condensate. The calculated dependence of T_c on hole concentration is qualitatively similar to that observed in the high-temperature superconducting cuprates.Comment: 5 pages, 2 figures, to be published in J. Phys. Condens. Matte

    Electroweak Precision Constraints on the Littlest Higgs Model with T Parity

    Full text link
    We compute the leading corrections to the properties of W and Z bosons induced at the one-loop level in the SU(5)/SO(5) Littlest Higgs model with T parity, and perform a global fit to precision electroweak data to determine the constraints on the model parameters. We find that a large part of the model parameter space is consistent with data. Values of the symmetry breaking scale as low as 500 GeV are allowed, indicating that no significant fine tuning in the Higgs potential is required. We identify a region within the allowed parameter space in which the lightest T-odd particle, the partner of the hypercharge gauge boson, has the correct relic abundance to play the role of dark matter. In addition, we find that a consistent fit to data can be obtained for large values of the Higgs mass, up to 800 GeV, due to the possibility of a partial cancellation between the contributions to the T parameter from Higgs loops and new physics.Comment: 23 pages, 9 figures. Minor correction

    Open-closed duality and Double Scaling

    Get PDF
    Nonperturbative terms in the free energy of Chern-Simons gauge theory play a key role in its duality to the closed topological string. We show that these terms are reproduced by performing a double scaling limit near the point where the perturbation expansion diverges. This leads to a derivation of closed string theory from this large-N gauge theory along the lines of noncritical string theories. We comment on the possible relevance of this observation to the derivation of superpotentials of asymptotically free gauge theories and its relation to infrared renormalons.Comment: 10 pages, LaTe

    Generating Function for Particle-Number Probability Distribution in Directed Percolation

    Full text link
    We derive a generic expression for the generating function (GF) of the particle-number probability distribution (PNPD) for a simple reaction diffusion model that belongs to the directed percolation universality class. Starting with a single particle on a lattice, we show that the GF of the PNPD can be written as an infinite series of cumulants taken at zero momentum. This series can be summed up into a complete form at the level of a mean-field approximation. Using the renormalization group techniques, we determine logarithmic corrections for the GF at the upper critical dimension. We also find the critical scaling form for the PNPD and check its universality numerically in one dimension. The critical scaling function is found to be universal up to two non-universal metric factors.Comment: (v1,2) 8 pages, 5 figures; one-loop calculation corrected in response to criticism received from Hans-Karl Janssen, (v3) content as publishe

    An Effect of α\alpha' Corrections on Racetrack Inflation

    Full text link
    We study the effects of α \alpha ' corrections to the K\"ahler potential on volume stabilisation and racetrack inflation. In a region where classical supergravity analysis is justified, stringy corrections can nevertheless be relevant for correctly analyzing moduli stabilisation and the onset of inflation.Comment: 13 pages, 4 figures. Typos corrected, references added, this version to appear in JHE

    Neutralino, axion and axino cold dark matter in minimal, hypercharged and gaugino AMSB

    Full text link
    Supersymmetric models based on anomaly-mediated SUSY breaking (AMSB) generally give rise to a neutral wino as a WIMP cold dark matter (CDM) candidate, whose thermal abundance is well below measured values. Here, we investigate four scenarios to reconcile AMSB dark matter with the measured abundance: 1. non-thermal wino production due to decays of scalar fields ({\it e.g} moduli), 2. non-thermal wino production due to decays of gravitinos, 3. non-thermal wino production due to heavy axino decays, and 4. the case of an axino LSP, where the bulk of CDM is made up of axions and thermally produced axinos. In cases 1 and 2, we expect wino CDM to constitute the entire measured DM abundance, and we investigate wino-like WIMP direct and indirect detection rates. Wino direct detection rates can be large, and more importantly, are bounded from below, so that ton-scale noble liquid detectors should access all of parameter space for m_{\tz_1}\alt 500 GeV. Indirect wino detection rates via neutrino telescopes and space-based cosmic ray detectors can also be large. In case 3, the DM would consist of an axion plus wino admixture, whose exact proportions are very model dependent. In this case, it is possible that both an axion and a wino-like WIMP could be detected experimentally. In case 4., we calculate the re-heat temperature of the universe after inflation. In this case, no direct or indirect WIMP signals should be seen, although direct detection of relic axions may be possible. For each DM scenario, we show results for the minimal AMSB model, as well as for the hypercharged and gaugino AMSB models.Comment: 29 pages including 13 figure
    corecore