48 research outputs found

    Evaluation of Exchange-Correlation Energy, Potential, and Stress

    Full text link
    We describe a method for calculating the exchange and correlation (XC) contributions to the total energy, effective potential, and stress tensor in the generalized gradient approximation. We avoid using the analytical expressions for the functional derivatives of E_xc*rho, which depend on discontinuous second-order derivatives of the electron density rho. Instead, we first approximate E_xc by its integral in a real space grid, and then we evaluate its partial derivatives with respect to the density at the grid points. This ensures the exact consistency between the calculated total energy, potential, and stress, and it avoids the need of second-order derivatives. We show a few applications of the method, which requires only the value of the (spin) electron density in a grid (possibly nonuniform) and returns a conventional (local) XC potential.Comment: 7 pages, 3 figure

    Analytic structure factors and pair-correlation functions for the unpolarized homogeneous electron gas

    Full text link
    We propose a simple and accurate model for the electron static structure factors (and corresponding pair-correlation functions) of the 3D unpolarized homogeneous electron gas. Our spin-resolved pair-correlation function is built up with a combination of analytic constraints and fitting procedures to quantum Monte Carlo data, and, in comparison to previous attempts (i) fulfills more known integral and differential properties of the exact pair-correlation function, (ii) is analytic both in real and in reciprocal space, and (iii) accurately interpolates the newest, extensive diffusion-Monte Carlo data of Ortiz, Harris and Ballone [Phys. Rev. Lett. 82, 5317 (1999)]. This can be of interest for the study of electron correlations of real materials and for the construction of new exchange and correlation energy density functionals.Comment: 14 pages, 5 figures, submitted to Phys. Rev.

    Software for the frontiers of quantum chemistry:An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design
    corecore