19 research outputs found

    Characterization of the transcriptional and metabolic responses of pediatric high grade gliomas to mTOR-HIF-1α axis inhibition.

    Get PDF
    Pediatric high grade glioma (pHGGs), including sus-tentorial and diffuse intrinsic pontine gliomas, are known to have a very dismal prognosis. For instance, even an increased knowledge on molecular biology driving this brain tumor entity, there is no treatment able to cure those patients. Therefore, we were focusing on a translational pathway able to increase the cell resistance to treatment and to reprogram metabolically tumor cells, which are, then, adapting easily to a hypoxic microenvironment. To establish, the crucial role of the hypoxic pathways in pHGGs, we, first, assessed their protein and transcriptomic deregulations in a pediatric cohort of pHGGs and in pHGG's cell lines, cultured in both normoxic and hypoxic conditions. Secondly, based on the concept of a bi-therapy targeting in pHGGs mTORC1 (rapamycin) and HIF-1α (irinotecan), we hypothesized that the balanced expressions between RAS/ERK, PI3K/AKT and HIF-1α/HIF-2α/MYC proteins or genes may provide a modulation of the cell response to this double targeting. Finally, we could evidence three protein, genomic and metabolomic profiles of response to rapamycin combined with irinotecan. The pattern of highly sensitive cells to mTOR/HIF-1α targeting was linked to a MYC/ERK/HIF-1α over-expression and the cell resistance to a major hyper-expression of HIF-2α

    Increasing the oxygen load by treatment with myo-inositol trispyrophosphate reduces growth of colon cancer and modulates the intestine homeobox gene Cdx2

    No full text
    Preventing tumor neovascularisation is one of the strategies recently developed to limit the dissemination of cancer cells and apparition of metastases. Although these approaches could improve the existing treatments, a number of unexpected negative effects have been reported, mainly linked to the hypoxic condition and the subsequent induction of the pro-oncogenic hypoxia inducible factor(s) resulting from cancer cells' oxygen starvation. Here, we checked in vivo on colon cancer cells an alternative approach. It is based on treatment with myo-inositol trispyrophosphate (ITPP), a molecule that leads to increased oxygenation of tumors. We provide evidence that ITPP increases the survival of mice in a model of carcinomatosis of human colon cancer cells implanted into the peritoneal cavity. ITPP also reduced the growth of subcutaneous colon cancer cells xenografted in nu/nu mice. In the subcutaneous tumors, ITPP stimulated the expression of the homeobox gene Cdx2 that is crucial for intestinal differentiation and that also has an anti-tumoral function. On this basis, human colon cancer cells were cultured in vitro in hypoxic conditions. Hypoxia was shown to decrease the level of Cdx2 protein, mRNA and the activity of the Cdx2 promoter. This decline was unrelated to the activation of HIF1 alpha and HIF2 alpha by hypoxia. However, it resulted from the activation of a phosphatidylinositol 3-kinases-like mitogen-activated protein kinase pathway, as assessed by the fact that LY294002 and U0126 restored high Cdx2 expression in hypoxia. Corroborating these results, U0126 recapitulated the increase of Cdx2 triggered by ITPP in subcutaneous colon tumor xenografts. The present study provides evidence that a chemical compound that increases oxygen pressure can antagonize the hypoxic setting and reduce the growth of human colon tumors implanted in nu/nu mice

    Increasing the oxygen load by treatment with myo-inositol trispyrophosphate reduces growth of colon cancer and modulates the intestine homeobox gene Cdx2

    No full text
    Preventing tumor neovascularisation is one of the strategies recently developed to limit the dissemination of cancer cells and apparition of metastases. Although these approaches could improve the existing treatments, a number of unexpected negative effects have been reported, mainly linked to the hypoxic condition and the subsequent induction of the pro-oncogenic hypoxia inducible factor(s) resulting from cancer cells' oxygen starvation. Here, we checked in vivo on colon cancer cells an alternative approach. It is based on treatment with myo-inositol trispyrophosphate (ITPP), a molecule that leads to increased oxygenation of tumors. We provide evidence that ITPP increases the survival of mice in a model of carcinomatosis of human colon cancer cells implanted into the peritoneal cavity. ITPP also reduced the growth of subcutaneous colon cancer cells xenografted in nu/nu mice. In the subcutaneous tumors, ITPP stimulated the expression of the homeobox gene Cdx2 that is crucial for intestinal differentiation and that also has an anti-tumoral function. On this basis, human colon cancer cells were cultured in vitro in hypoxic conditions. Hypoxia was shown to decrease the level of Cdx2 protein, mRNA and the activity of the Cdx2 promoter. This decline was unrelated to the activation of HIF1 alpha and HIF2 alpha by hypoxia. However, it resulted from the activation of a phosphatidylinositol 3-kinases-like mitogen-activated protein kinase pathway, as assessed by the fact that LY294002 and U0126 restored high Cdx2 expression in hypoxia. Corroborating these results, U0126 recapitulated the increase of Cdx2 triggered by ITPP in subcutaneous colon tumor xenografts. The present study provides evidence that a chemical compound that increases oxygen pressure can antagonize the hypoxic setting and reduce the growth of human colon tumors implanted in nu/nu mice

    Nat Commun

    No full text
    Cellular protrusions involved in motile processes are driven by site-directed assembly of actin filaments in response to Rho-GTPase signalling. So far, only chemical compounds depolymerizing actin or stabilizing filaments, inhibiting N-WASP, Arp2/3 or formins, have been used to eliminate the formation of protrusions, while Rho-GTPase-dominant positive strategies have been designed to stimulate protrusions. Here we describe the design of four polyamines (macrocyclic and branched acyclic), and show that they enter the cell and induce specific growth of actin-enriched lamellipodia within minutes. The largest increase in cell area is obtained with micromolar amounts of a branched polyamine harbouring an 8-carbon chain. These polyamines specifically target actin both in vitro and in vivo. Analysis of their effects on filament assembly dynamics and its regulation indicates that the polyamines act by slowing down filament dynamics and by enhancing actin nucleation. These compounds provide new opportunities to study the actin cytoskeleton in motile and morphogenetic processes

    In Vivo Topoisomerase I Inhibition Attenuates the Expression of Hypoxia-Inducible Factor 1α Target Genes and Decreases Tumor Angiogenesis

    No full text
    Topoisomerase I is a privileged target for widely used anticancer agents such as irinotecan. Although these drugs are classically considered to be DNA-damaging agents, increasing evidence suggests that they might also influence the tumor environment. This study evaluates in vivo cellular and molecular modifications induced by irinotecan, a topoisomerase I–directed agent, in patient-derived colon tumors subcutaneously implanted in athymic nude mice. Irinotecan was given intraperitoneally at 40 mg/kg five times every 5 d, and expression profiles were evaluated at d 25 in tumors from treated and untreated animals. Unexpectedly, the in vivo antitumor activity of irinotecan was closely linked to a downregulation of hypoxia-inducible factor-1α (HIF1A) target genes along with an inhibition of HIF1A protein accumulation. The consequence was a decrease in tumor angiogenesis leading to tumor size stabilization. These results highlight the molecular basis for the antitumor activity of a widely used anticancer agent, and the method used opens the way for mechanistic studies of the in vivo activity of other anticancer therapies
    corecore