67 research outputs found

    Spatial and Spectral Coherent Control with Frequency Combs

    Full text link
    Quantum coherent control (1-3) is a powerful tool for steering the outcome of quantum processes towards a desired final state, by accurate manipulation of quantum interference between multiple pathways. Although coherent control techniques have found applications in many fields of science (4-9), the possibilities for spatial and high-resolution frequency control have remained limited. Here, we show that the use of counter-propagating broadband pulses enables the generation of fully controlled spatial excitation patterns. This spatial control approach also provides decoherence reduction, which allows the use of the high frequency resolution of an optical frequency comb (10,11). We exploit the counter-propagating geometry to perform spatially selective excitation of individual species in a multi-component gas mixture, as well as frequency determination of hyperfine constants of atomic rubidium with unprecedented accuracy. The combination of spectral and spatial coherent control adds a new dimension to coherent control with applications in e.g nonlinear spectroscopy, microscopy and high-precision frequency metrology.Comment: 12 page

    Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device

    Get PDF
    Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision
    • …
    corecore