185 research outputs found
A comparative study of electrochemical, spectroscopic and structural properties of phenyl, thienyl and furyl substituted ethylenes
a detailed electrochemical and photophysical comparative study of three parallel series of phenyl, thienyl and furyl substituted ethylenes has been carried out, implemented by the computational calculation of selected terms. Relationships have been highlighted between molecular structure (number and type of aromatic rings) and important functional properties (in particular, electronic features and oligomerization ability). Interestingly, some of the studied heteroaryl-ethylenes show emission in the solid state displaying an aggregation-induced emission behavior
Recommended from our members
Reserve and production data for the Andector Field area, Central Basin Platform, West Texas: Data for model constraint and development
The integrated model under development will ultimately predict reservoir properties, volumes, fluid content, and fluid composition (water, oil, and gas). Oil properties are presented here for use in subsequent flow models. To further constrain and verify these predictions, production history data, reservoir geometry, and well test data are used to map the initial potential, remaining reserves, and maximum non allowable limited production rates of the Andector Field. Historic bottom hole pressure data illustrate early production interference and boundary effects
Recommended from our members
Calculation and interpretation of crustal shortening along the Central Basin Platform, West Texas: A method to calculate basement motion for modeling input
The analysis carried out in the Chemical Interaction of Rocks and Fluids Basin (CIRFB) model describes the chemical and physical evolution of the entire system. One aspect of this is the deformation of the rocks, and its treatment with a rigorous flow and rheological model. This type of analysis depends on knowing the state of the model domain`s boundaries as functions of time. In the Andrews and Ector County areas of the Central Basin Platform of West Texas, the authors calculate this shortening with a simple interpretation of the basic motion and a restoration of the Ellenburger formation. Despite its simplicity, this calculation reveals two distinct periods of shortening/extension, a relatively uniform directionality to all the deformation, and the localization of deformation effects to the immediate vicinities of the major faults in the area. Conclusions are drawn regarding the appropriate expressions of these boundary conditions in the CIRFB model and possible implications for exploration
Controlling domain patterns far from equilibrium
A high degree of control over the structure and dynamics of domain patterns
in nonequilibrium systems can be achieved by applying nonuniform external
fields near parity breaking front bifurcations. An external field with a linear
spatial profile stabilizes a propagating front at a fixed position or induces
oscillations with frequency that scales like the square root of the field
gradient. Nonmonotonic profiles produce a variety of patterns with controllable
wavelengths, domain sizes, and frequencies and phases of oscillations.Comment: Published version, 4 pages, RevTeX. More at
http://t7.lanl.gov/People/Aric
Domain Walls in Non-Equilibrium Systems and the Emergence of Persistent Patterns
Domain walls in equilibrium phase transitions propagate in a preferred
direction so as to minimize the free energy of the system. As a result, initial
spatio-temporal patterns ultimately decay toward uniform states. The absence of
a variational principle far from equilibrium allows the coexistence of domain
walls propagating in any direction. As a consequence, *persistent* patterns may
emerge. We study this mechanism of pattern formation using a non-variational
extension of Landau's model for second order phase transitions. PACS numbers:
05.70.Fh, 42.65.Pc, 47.20.Ky, 82.20MjComment: 12 pages LaTeX, 5 postscript figures To appear in Phys. Rev.
Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves
The dynamic patterning of the plant hormone auxin and its efflux facilitator
the PIN protein are the key regulator for the spatial and temporal organization
of plant development. In particular auxin induces the polar localization of its
own efflux facilitator. Due to this positive feedback auxin flow is directed
and patterns of auxin and PIN arise. During the earliest stage of vein
initiation in leaves auxin accumulates in a single cell in a rim of epidermal
cells from which it flows into the ground meristem tissue of the leaf blade.
There the localized auxin supply yields the successive polarization of PIN
distribution along a strand of cells. We model the auxin and PIN dynamics
within cells with a minimal canalization model. Solving the model analytically
we uncover an excitable polarization front that triggers a polar distribution
of PIN proteins in cells. As polarization fronts may extend to opposing
directions from their initiation site we suggest a possible resolution to the
puzzling occurrence of bipolar cells, such we offer an explanation for the
development of closed, looped veins. Employing non-linear analysis we identify
the role of the contributing microscopic processes during polarization.
Furthermore, we deduce quantitative predictions on polarization fronts
establishing a route to determine the up to now largely unknown kinetic rates
of auxin and PIN dynamics.Comment: 9 pages, 4 figures, supplemental information included, accepted for
publication in Eur. Phys. J.
Order Parameter Equations for Front Transitions: Planar and Circular Fronts
Near a parity breaking front bifurcation, small perturbations may reverse the
propagation direction of fronts. Often this results in nonsteady asymptotic
motion such as breathing and domain breakup. Exploiting the time scale
differences of an activator-inhibitor model and the proximity to the front
bifurcation, we derive equations of motion for planar and circular fronts. The
equations involve a translational degree of freedom and an order parameter
describing transitions between left and right propagating fronts.
Perturbations, such as a space dependent advective field or uniform curvature
(axisymmetric spots), couple these two degrees of freedom. In both cases this
leads to a transition from stationary to oscillating fronts as the parity
breaking bifurcation is approached. For axisymmetric spots, two additional
dynamic behaviors are found: rebound and collapse.Comment: 9 pages. Aric Hagberg: http://t7.lanl.gov/People/Aric/; Ehud Meron:
http://www.bgu.ac.il/BIDR/research/staff/meron.htm
Scenarios of domain pattern formation in a reaction-diffusion system
We performed an extensive numerical study of a two-dimensional
reaction-diffusion system of the activator-inhibitor type in which domain
patterns can form. We showed that both multidomain and labyrinthine patterns
may form spontaneously as a result of Turing instability. In the stable
homogeneous system with the fast inhibitor one can excite both localized and
extended patterns by applying a localized stimulus. Depending on the parameters
and the excitation level of the system stripes, spots, wriggled stripes, or
labyrinthine patterns form. The labyrinthine patterns may be both connected and
disconnected. In the the stable homogeneous system with the slow inhibitor one
can excite self-replicating spots, breathing patterns, autowaves and
turbulence. The parameter regions in which different types of patterns are
realized are explained on the basis of the asymptotic theory of instabilities
for patterns with sharp interfaces developed by us in Phys. Rev. E. 53, 3101
(1996). The dynamics of the patterns observed in our simulations is very
similar to that of the patterns forming in the ferrocyanide-iodate-sulfite
reaction.Comment: 15 pages (REVTeX), 15 figures (postscript and gif), submitted to
Phys. Rev.
The Web will kill them all: new media, digital utopia, and political struggle in the Italian 5-Star Movement
This article examines the role of discourses about
new media technology and the Web in the
rise of the 5-Star Movement (Movimento 5 Stelle, or
M5S) in Italy. Founded by comedian and
activist Beppe Grillo and Web entrepreneur Gianrobe
rto Casaleggio in 2009, this movement
succeeded in becoming the second largest party at t
he 2013 national elections in Italy. This
article aims to discuss how elements of digital uto
pia and Web-centric discourses have been
inserted into the movement’s political message, and
how the construction of the Web as a myth
has shaped the movement’s discourse and political p
ractice. The 5-Star Movement is compared
and contrasted with other social and political move
ments in Western countries which have
displayed a similar emphasis on new media, such as
the Occupy movement, the Indignados
movement, and the Pirate Parties in Sweden and Germ
any. By adopting and mutating cyber-
utopian discourses from the so-called Californian i
deology, the movement symbolically identifies
itself with the Web. The traditional political esta
blishment is associated with “old” media
(television, radio, and the printed press), and rep
resented as a “walking dead,” doomed to be
superseded and buried by a Web-based direct democra
cy
- …