38 research outputs found

    Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats

    Get PDF
    In agricultural landscapes, arthropods provide essential ecosystem services such as biological pest control and pollination. Intensified crop management practices and homogenization of landscapes have led to declines among such organisms. Semi-natural habitats, associated with high numbers of these organisms, are increasingly lost from agricultural landscapes but diversification by increasing crop diversity has been proposed as a way to reverse observed arthropod declines and thus restore ecosystem services. However, whether or not an increase in the diversity of crop types within a landscape promotes diversity and abundances of pollinating and predaceous arthropods, and how semi-natural habitats might modify this relationship, are not well understood. To test how crop diversity and the proportion of semi-natural habitats within a landscape are related to the diversity and abundance of beneficial arthropod communities, we collected primary data from seven studies focusing on natural enemies (carabids and spiders) and pollinators (bees and hoverflies) from 154 crop fields in Southern Sweden between 2007 and 2017. Crop diversity within a 1-km radius around each field was positively related to the Shannon diversity index of carabid and pollinator communities in landscapes rich in semi-natural habitats. Abundances were mainly affected by the proportion of semi-natural habitats in the landscape, with decreasing carabid and increasing pollinator numbers as the proportion of this habitat type increased. Spiders showed no response to either crop diversity or the proportion of semi-natural habitats. Synthesis and applications. We show that the joint effort of preserving semi-natural habitats and promoting crop diversity in agricultural landscapes is necessary to enhance communities of natural enemies and pollinators. Our results suggest that increasing the diversity of crop types can contribute to the conservation of service-providing arthropod communities, particularly if the diversification of crops targets complex landscapes with a high proportion of semi-natural habitats

    Adaptive and maladaptive consequences of “matching habitat choice:” lessons from a rapidly-evolving butterfly metapopulation

    Get PDF
    Relationships between biased dispersal and local adaptation are currently debated. Here, I show how prior work on wild butterflies casts a novel light on this topic. “Preference” is defined as the set of likelihoods of accepting particular resources after encountering them. So defined, butterfly oviposition preferences are heritable habitat adaptations distinct from both habitat preference and biased dispersal, but influencing both processes. When a butterfly emigrates after its oviposition preference begins to reduce realized fecundity, the resulting biased dispersal is analogous to that occurring when a fish emigrates after its morphological habitat adaptations reduce its feeding rate. I illustrate preference-biased dispersal with examples from metapopulations of Melitaea cinxia and Euphydryas editha. E. editha were feeding on a well-defended host, Pedicularis, when humans created patches in which Pedicularis was killed and a less-defended host, Collinsia, was rendered phenologically available. Patch-specific natural selection favoured oviposition on Collinsia in logged (“clearing”) patches and on Pedicularis in undisturbed open forest. Quantitative variation in post-alighting oviposition preference was heritable, and evolved to be consistently different between patch types. This difference was driven more by biased dispersal than by spatial variation of natural selection. Insects developing on Collinsia in clearings retained adaptations to Pedicularis in clutch size, geotaxis and oviposition preference, forcing them to choose between emigrating in search of forest habitats with Pedicularis or staying and failing to find their preferred host. Insects that stayed suffered reduction of realized fecundity after delayed oviposition on Collinsia. Those that emigrated suffered even greater fitness penalty from consistently low offspring survival on Pedicularis. Paradoxically, most emigrants reduced both their own fitness and that of the recipient populations by dispersing from a benign natal habitat to which they were maladapted into a more demanding habitat to which they were well-adapted. “Matching habitat choice” reduced fitness when evolutionary lag rendered traditional cues unreliable in a changing environment

    Weeds for bees? A review

    Full text link

    Grasslands enhance ecosystem service multifunctionality above and below-ground in agricultural landscapes

    No full text
    Managing agricultural landscapes integrate production, biodiversity conservation and the flow of ecosystem services (ES) is of paramount importance to simultaneously meet production goals and environmental challenges. However, the response of farmland biodiversity and multiple ES to land-use change at multiple spatial scales remains poorly understood. We explored the effects of land-use at local (grassland vs. oilseed rape fields) and landscape scale (cover of permanent grasslands) on the provision of biodiversity (plants, arthropods, birds), five ES (pollination, pest control, soil fertility, carbon storage and water regulation) and overall ES-multifunctionality. ES-multifunctionality was higher in grasslands than in crop fields, by 25.2% above-ground and by 106.1% below-ground. Multiple threshold analyses highlighted a particularly poor level of performance for below-ground functions in crop fields. This habitat type was however capable of providing numerous above-ground functions simultaneously, although at low levels of performance when compared to the maximum values recorded in the study. Grasslands supported higher biodiversity and provision of pollination, soil fertility, carbon storage and water regulation. Landscape composition influenced the provision of multiple ES: a 10% increase in grassland cover in the landscape enhanced above-ground ES-multifunctionality by 11.0% in both habitats. In particular, grasslands cover in the landscape supported the provision of arthropod diversity, pollination and pest control provided by carabids. Synthesis and applications. The results of this field study show the key importance of preserving semi-natural grasslands in agricultural landscapes for the conservation of farmland biodiversity, for the protection of soils and the delivery of multiple ES critical for crop production. Maximization of multifunctionality necessitates the integration at the landscape scale (0.5-2 km) of semi-natural patches within the intensively farmed agricultural matrix. This would require not only the protection of existing grasslands, but also their restoration in simplified landscapes. The promotion of mixed farming (i.e., both crop and livestock production) might increase semi-natural grassland cover at the landscape scale

    Rewilding expérimental améliore la composition fonctionnelle et l'utilisation de l'habitat des pollinisateurs d'une prairie

    No full text
    International audience1. Semi-natural grasslands are rich in biodiversity and thus important habitats for conservation, yet they are experiencing rapid declines due to agricultural intensification and abandonment. Promoting a more diverse mammalian herbivore community, including large and megaherbivores, may result in positive cascade effects for biodiversity and ecosystem functioning. Therefore, reintroducing an ecologically functional substitute of an extinct large herbivore could mitigate current biodiversity declines and foster semi-natural grassland conservation. 2. To test this hypothesis, we set up a 3-year rewilding experiment where 12 feral horses were introduced in three 10-hectare enclosure replicates (four horses per enclosure). We used community-weighted mean plant functional traits to elucidate plant community changes induced by grazing through time. We also investigated the effects of this experimental treatment on insect pollinated plants and on pollinator habitat use. 3. The grassland community exerted a mixed tolerance/avoidance response to grazing. This resulted in plant functional compositional changes which favoured prostrate plant species with higher specific leaf area, characteristic of ruderal communities. 4. Plant species richness was higher in grazed compared to ungrazed areas. Butterfly and bumblebee habitat use, as well as feeding and resting activities were also higher in grazed areas. Moreover, the number of pollinators increased with plant species richness. 5. Synthesis and applications. This study demonstrates that, to enhance the diversity of a given herbivore community with ecological replacements of extinct wild horses can have significant effects on the functional composition of grasslands. It can also mitigate plant species declines, in particular bee-dependent plants, and boost pollinator habitat use. Novel management alternatives are urgently needed to reverse the negative effect of land abandonment in European agricultural landscapes. Thus, rewilding interventions with large mammalian herbivores may offset current biodiversity declines by maintaining important functional links between plants and pollinators in grassland ecosystems

    Contrasting effects of habitat area and connectivity on evenness of pollinator communities

    No full text
    Losses of both habitat area and connectivity have been identified as important drivers of species richness declines, but little theoretical and empirical work exists that addresses the effect of fragmentation on relative commonness of highly mobile species such as pollinating insects. With a large dataset of wild bee and butterfly abundances collected across Europe, we first tested the effect of habitat area and connectivity on evenness in pollinator communities using a large array of indexes that give different weight to dominance and rarity. Second, we tested if traits related to mobility and diet breadth could explain the observed evenness patterns. We found a clear negative effect of area and a weaker, but positive effect of connectivity on evenness. Communities in small habitat fragments were mainly composed of mobile and generalist species. The higher evenness in small fragments could thereby be generated by highly mobile species that maintain local populations with frequent inter-fragment movements. Trait analysis suggested an increasing importance of dispersal over local recruitment, as we move from large to small fragments and from less to more connected fragments. Species richness and evenness were negatively correlated indicating that the two variables responded differently to habitat area and connectivity, although the mechanisms underlying the observed patterns are difficult to isolate. Even though habitat area and connectivity often decrease simultaneously due to habitat fragmentation, an interesting practical implication of the contrasting effect of the two variables is that the resulting community composition will depend on the relative strength of these two processes

    Crop diversity benefits carabid and pollinator communities in landscapes with semi-natural habitats

    Get PDF
    In agricultural landscapes, arthropods provide essential ecosystem services such as biological pest control and pollination. Intensified crop management practices and homogenization of landscapes have led to declines among such organisms. Semi-natural habitats, associated with high numbers of these organisms, are increasingly lost from agricultural landscapes but diversification by increasing crop diversity has been proposed as a way to reverse observed arthropod declines and thus restore ecosystem services. However, whether or not an increase in the diversity of crop types within a landscape promotes diversity and abundances of pollinating and predaceous arthropods, and how semi-natural habitats might modify this relationship, are not well understood. To test how crop diversity and the proportion of semi-natural habitats within a landscape are related to the diversity and abundance of beneficial arthropod communities, we collected primary data from seven studies focusing on natural enemies (carabids and spiders) and pollinators (bees and hoverflies) from 154 crop fields in Southern Sweden between 2007 and 2017. Crop diversity within a 1-km radius around each field was positively related to the Shannon diversity index of carabid and pollinator communities in landscapes rich in semi-natural habitats. Abundances were mainly affected by the proportion of semi-natural habitats in the landscape, with decreasing carabid and increasing pollinator numbers as the proportion of this habitat type increased. Spiders showed no response to either crop diversity or the proportion of semi-natural habitats. Synthesis and applications. We show that the joint effort of preserving semi-natural habitats and promoting crop diversity in agricultural landscapes is necessary to enhance communities of natural enemies and pollinators. Our results suggest that increasing the diversity of crop types can contribute to the conservation of service-providing arthropod communities, particularly if the diversification of crops targets complex landscapes with a high proportion of semi-natural habitats
    corecore