951 research outputs found

    Core-Level Satellite Excitations of K/Al(100) and K/Al(111)

    Get PDF
    Alkali-metal-induced satellite peaks associated with the K 3p and Al 2p core levels have been measured with photoemission for K/Al(111) and K/Al(100) under both low- and room-temperature preparation conditions. For low-temperature deposition we observedddd loss peaks in good agreement with electron-energy-loss spectroscopy studies of analogous systems which we assign to the excitation of collective plasmonlike modes in the alkali-metal overlayer. For room-temperature preparation conditions, we observed significant changes in the satellite loss structure which we attribute to a decrease or loss of metallic behavior in the alkali-metal layer. We account for some of our results as a change in bonding configuration of the K atoms from on-top-of surface to substitutional adsorption for low versus room-temperature preparations

    The bumpy light curve of supernova iPTF13z

    Get PDF
    A Type IIn supernova (SN) is dominated by the interaction of SN ejecta with the circumstellar medium (CSM). Some SNe IIn (e.g., SN 2006jd) have episodes of re-brightening ("bumps") in their light curves. We present iPTF13z, a SN IIn discovered by the intermediate Palomar Transient Factory (iPTF) and characterised by several bumps in its light curve. We analyse this peculiar behaviour trying to infer the properties of the CSM and of the SN explosion, as well as the nature of its progenitor star. We obtained multi-band optical photometry for over 1000 days after discovery with the P48 and P60 telescopes at Palomar Observatory. We obtained low-resolution optical spectra in the same period. We did an archival search for progenitor outbursts. We analyse our photometry and spectra, and compare iPTF13z to other SNe IIn. A simple analytical model is used to estimate properties of the CSM. iPTF13z was a SN IIn showing a light curve with five bumps during its decline phase. The bumps had amplitudes between 0.4 and 0.9 mag and durations between 20 and 120 days. The most prominent bumps appeared in all our different optical bands. The spectra showed typical SN IIn characteristics, with emission lines of Hα\alpha (with broad component FWHM ~103104  km s110^{3}-10^{4} ~{\rm ~km ~s^{-1}} and narrow component FWHM ~102 km s110^2 \rm ~km ~s^{-1}) and He I, but also with Fe II, Ca II, Na I D and Hβ\beta P-Cygni profiles (with velocities of ~10310^{3}  km s1{\rm ~km ~s^{-1}}). A pre-explosion outburst was identified lasting 50\gtrsim 50 days, with Mr15M_r \approx -15 mag around 210 days before discovery. Large, variable progenitor mass-loss rates (~> 0.01 M yr1M_{\odot} \rm ~yr^{-1}) and CSM densities (~> 1016^{-16} g cm3^{-3}) are derived. We suggest that the light curve bumps of iPTF13z arose from SN ejecta interacting with denser regions in the CSM, possibly produced by the eruptions of a luminous blue variable star.Comment: Version 2: Update to match published paper. 21 pages, 14 figures, abstract abridged to comply with arXiv length limit. In version 1 of the paper on arXiv, Table 3 had some erroneous entries. Table 3 is now corrected and available via VizieR. Version 1 comment: Accepted for publication in Astronomy & Astrophysics (24 pages, 14 figures, abstract abridged by 20 % not to exceed the arXiv length limit

    Unified Behavior of Alkali Core-Level Binding-Energy Shifts Induced by sp Metals

    Get PDF
    Thin overlayers of Na, K, Rb, and Cs on different sp-metal substrates have been investigated using photoelectron spectroscopy. The alkali core levels show clearly resolved binding-energy shifts between the surface layer, the intermediate layer(s), and the interface layer. The magnitude of these shifts depends on sp metal and on alkali metal. The layer-resolved core-level binding-energy shifts are well reproduced by models based on a thermodynamical description. For three-layer alkali films the core-level binding energy of the intermediate layer is found to exhibit a small but significant shift between different sp-metal substrates. A simple relationship between the core-level binding-energy shift for the interface layer and the difference in rs value between the sp substrate and the adsorbate is shown to exist
    corecore