667 research outputs found

    Calibration of the Barnes-Evans relation using interferometric observations of Cepheid variables

    Get PDF
    Direct diameter measurements of Cepheid variables are used to calibrate the Barnes-Evans Cepheid surface brightness relation. More than 50 separate Cepheid diameter measurements from four different optical interferometers are used to calculate surface brightnesses as a function of magnitude and color. For two Cepheids, η Aquilae and ζ Geminorum, high precision diameter measurements as a function of pulsation phase are available from the Palomar Testbed Interferometer (PTI). Relations using only these diameters are found for each individual Cepheid in order to search for differences between Cepheids of different pulsation period. In all cases the best-fit relations are simple linear relations between surface brightness and color with the constraint that for a spectral type A0 star (where all colors equal zero) all relations must yield the same surface brightness (i.e., there must be a common zero-point). The derived relations found using interferometric Cepheid diameters are consistent with functions in the literature found using interferometric observations of non-variable giant and supergiant stars. In addition, while the separate relations for η Aquilae and ζ Geminorum are marginally consistent within the errors they do differ in the direction predicted for Cepheids of differing pulsation period. Using these new surface brightness relations the distance is calculated to the nearby Cepheid δ Cephei for which a new distance has been found using trigonometric parallax with the Hubble Space Telescope. These distances are well within the errors of the distance derived from trigonometric parallax

    Calibrating the Cepheid Period-Luminosity relation with the VLTI

    Get PDF
    The VLTI is the ideal instrument for measuring the distances of nearby Cepheids with the Baade-Wesselink method, allowing an accurate recalibration of the Cepheid Period-Luminosity relation. The high accuracy required by such measurement, however, can only be reached taking into account the effects of limb darkening, and its dependence on the Cepheid pulsations. We present here our new method to compute phase- and wavelength-dependent limb darkening profiles, based on hydrodynamic simulation of Classical Cepheid atmospheres.Comment: 3 pages, 2 postscript figures, uses eas.cls LaTeX class file, to appear in the proc. Eurowinter School "Observing with the VLTI", Feb 3-8 2002, Les Houches (France

    A High-Resolution Study of the HI Content of Local Group Dwarf Irregular Galaxy WLM

    Get PDF
    Dwarf irregular galaxies are unique laboratories for studying the interaction between stars and the interstellar medium in low mass environments. We present the highest spatial resolution observations to date of the neutral hydrogen content of the Local Group dwarf irregular galaxy WLM. We find that WLM's neutral hydrogen distribution is typical for a galaxy of its type and size and derive an HI mass of 6.3e7 Msun for WLM. In addition, we derive an HI extent for WLM of 30 arcmin, which is much less than the 45 arcmin extent found by Huchtmeier, Seiradakis, and Materne (1981). We show that the broken ring of high column density neutral hydrogen surrounding the center of WLM is likely the result of star formation propagating out from the center of the galaxy. The young stars and Ha emission in this galaxy are mostly correlated with the high column density neutral hydrogen. The gap in the central ring is the result of star formation in that region using up, blowing out, or ionizing all of the neutral hydrogen. Like many late-type galaxies, WLM's velocity field is asymmetric with the approaching (northern) side appearing to be warped and a steeper velocity gradient for the approaching side than for the receding side in the inner region of the galaxy. We derive a dynamical mass for WLM of 2.16e9 Msun.Comment: 38 pages, 15 figures, 5 tables, accepted by AJ, high resolution version at http://www.astro.wisc.edu/~kepley/kepley_wlm.p

    Interferometric Studies of the extreme binary, ϵ\epsilon Aurigae: Pre-eclipse Observations

    Full text link
    We report new and archival K-band interferometric uniform disk diameters obtained with the Palomar Testbed Interferometer for the eclipsing binary star ϵ\epsilon Aurigae, in advance of the start of its eclipse in 2009. The observations were inteded to test whether low amplitude variations in the system are connected with the F supergiant star (primary), or with the intersystem material connecting the star with the enormous dark disk (secondary) inferred to cause the eclipses. Cepheid-like radial pulsations of the F star are not detected, nor do we find evidence for proposed 6% per decade shrinkage of the F star. The measured 2.27 +/- 0.11 milli-arcsecond K band diameter is consistent with a 300 times solar radius F supergiant star at the Hipparcos distance of 625 pc. These results provide an improved context for observations during the 2009-2011 eclipse.Comment: Accepted for Ap.J. Letters, Oct. 200

    VII Zw 403: H I structure in a blue compact dwarf galaxy

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at : http://iopscience.iop.org/ Copyright American Astronomical SocietyWe present optical (UBVJ), ultraviolet (FUV, NUV), and high-resolution atomic hydrogen (H I) observations of the nearby blue compact dwarf (BCD), VII Zw 403. We find that VII Zw 403 has a relatively high H I mass-to-light ratio for a BCD. The rotation velocity is nominally 10-15 km s(-1), but rises to similar to 20 km s(-1) after correction for the similar to 8-10 km s(-1) random motions present in the gas. The velocity field is complex, including a variation in the position angle of the major axis going from the northeast to the southwest parts of the galaxy. Our high-resolution Hi maps reveal structure in the central gas, including a large, low-density Hi depression or hole between the southern and northern halves of the galaxy, coincident with an unresolved X-ray source. Although interactions have been proposed as the triggering mechanism for the vigorous star formation occurring in BCDs, VII Zw 403 does not seem to have been tidally triggered by an external interaction, as we have found no nearby possible perturbers. It also does not appear to fall in the set of galaxies that exhibit a strong central mass density concentration, as its optical scale length is large in comparison to similar systems. However, there are some features that are compatible with an accretion event: optical/Hi axis misalignment, a change in position angle of the kinematic axis, and a complex velocity field.Peer reviewe

    Theoretical Limb Darkening for Classical Cepheids: II. Corrections for the Geometric Baade-Wesselink Method

    Full text link
    The geometric Baade-Wesselink method is one of the most promising techniques for obtaining a better calibration of the Cepheid period-luminosity relation by means of interferometric measurements of accurate diameters. In this paper we present new wavelength- and phase-dependent limb darkening corrections based on our time-dependent hydrodynamic models of the classical Cepheid zeta Gem. We show that a model simulation of a Cepheid atmosphere, taking into account the hydrodynamic effects associated with the pulsation, shows strong departures from the limb darkening otherwise predicted by a static model. For most of its pulsational cycle the hydrodynamic model predicts a larger limb darkening then the equivalent static model. The hydrodynamics affects the limb darkening mainly at UV and optical wavelengths. Most of these effects evolve slowly as the star pulsates, but there are phases, associated with shocks propagating into the photosphere, in which significant changes in the limb darkening take place on time-scales of the order of less than a day. We assess the implication of our model LD corrections fitting the geometric Baade-Wesselink distance of zeta Gem for the available near-IR PTI data. We discuss the effects of our model limb darkening on the best fit result, and analyze the requirements needed to test the time-dependence of the limb darkening with future interferometric measurements.Comment: 22 pages, 5 figures, to be published on the Astrophysical Journal, June 1 2003 issu
    • …
    corecore