4,450 research outputs found

    Coulomb Drag near the metal-insulator transition in two-dimensions

    Full text link
    We studied the drag resistivity between dilute two-dimensional hole systems, near the apparent metal-insulator transition. We find the deviations from the T2T^{2} dependence of the drag to be independent of layer spacing and correlated with the metalliclike behavior in the single layer resistivity, suggesting they both arise from the same origin. In addition, layer spacing dependence measurements suggest that while the screening properties of the system remain relatively independent of temperature, they weaken significantly as the carrier density is reduced. Finally, we demonstrate that the drag itself significantly enhances the metallic TT dependence in the single layer resistivity.Comment: 6 pages, 5 figures; revisions to text, to appear in Phys. Rev.

    Cosmological Vorticity in a Gravity with Quadratic Order Curvature Couplings

    Get PDF
    We analyse the evolution of the rotational type cosmological perturbation in a gravity with general quadratic order gravitational coupling terms. The result is expressed independently of the generalized nature of the gravity theory, and is simply interpreted as a conservation of the angular momentum.Comment: 5 pages, revtex, no figure

    Frictional Drag between Two Dilute Two-Dimensional Hole Layers

    Full text link
    We report drag measurements on dilute double layer two-dimensional hole systems in the regime of r_s=19~39. We observed a strong enhancement of the drag over the simple Boltzmann calculations of Coulomb interaction, and deviations from the T^2 dependence which cannot be explained by phonon-mediated, plasmon-enhanced, or disorder-related processes. We suggest that this deviation results from interaction effects in the dilute regime.Comment: 4 pages, 3 figures, accepted in Phys. Rev. Lett. Added single layer transport dat

    In-Plane Magnetodrag between Dilute Two-Dimensional Systems

    Full text link
    We performed in-plane magnetodrag measurements on dilute double layer two-dimensional hole systems, at in-plane magnetic fields that suppress the apparent metallic behavior, and to fields well above those required to fully spin polarize the system. When compared to the single layer magnetoresistance, the magnetodrag exhibits exactly the same qualitative behavior. In addition, we have found that the enhancement to the drag from the in-plane field exhibits a strong maximum when both layer densities are matched.Comment: 4 pages, 3 figures; minor corrections. Accepted in Phys. Rev. Let

    Third-order cosmological perturbations of zero-pressure multi-component fluids: Pure general relativistic nonlinear effects

    Full text link
    Present expansion stage of the universe is believed to be mainly governed by the cosmological constant, collisionless dark matter and baryonic matter. The latter two components are often modeled as zero-pressure fluids. In our previous work we have shown that to the second-order cosmological perturbations, the relativistic equations of the zero-pressure, irrotational, multi-component fluids in a spatially near flat background effectively coincide with the Newtonian equations. As the Newtonian equations only have quadratic order nonlinearity, it is practically interesting to derive the potential third-order perturbation terms in general relativistic treatment which correspond to pure general relativistic corrections. Here, we present pure general relativistic correction terms appearing in the third-order perturbations of the multi-component zero-pressure fluids. We show that, as in a single component situation, the third-order correction terms are quite small (~ 5 x10^{-5} smaller compared with the relativistic/Newtonian second-order terms) due to the weak level anisotropy of the cosmic microwave background radiation. Still, there do exist pure general relativistic correction terms in third-order perturbations which could potentially become important in future development of precision cosmology. We include the cosmological constant in all our analyses.Comment: 20 pages, no figur

    Electrically-Controlled Suppression of Rayleigh Backscattering in an Integrated Photonic Circuit

    Full text link
    Undesirable light scattering is an important fundamental cause for photon loss in nanophotonics. Rayleigh backscattering can be particularly difficult to avoid in wave-guiding systems and arises from both material defects and geometric defects at the subwavelength scale. It has been previously shown that systems with broken time-reversal symmetry (TRS) can naturally suppress detrimental Rayleigh backscattering, but these approaches have never been demonstrated in integrated photonics or through practical TRS-breaking techniques. In this work, we show that it is possible to suppress disorder-induced Rayleigh backscattering in integrated photonics via electrical excitation, even when defects are clearly present. Our experiment is performed in a lithium niobate on insulator (LNOI) integrated ring resonator at telecom wavelength, in which TRS is strongly broken through an acousto-optic interaction that is induced via radiofrequency input. We present evidence that Rayleigh backscattering in the resonator is almost completely suppressed by measuring both the optical density of states and through direct measurements of the back-scattered light. We additionally provide an intuitive argument to show that, in an appropriate frame of reference, the suppression of backscattering can be readily understood as a form of topological protection

    Newtonian versus relativistic nonlinear cosmology

    Full text link
    Both for the background world model and its linear perturbations Newtonian cosmology coincides with the zero-pressure limits of relativistic cosmology. However, such successes in Newtonian cosmology are not purely based on Newton's gravity, but are rather guided ones by previously known results in Einstein's theory. The action-at-a-distance nature of Newton's gravity requires further verification from Einstein's theory for its use in the large-scale nonlinear regimes. We study the domain of validity of the Newtonian cosmology by investigating weakly nonlinear regimes in relativistic cosmology assuming a zero-pressure and irrotational fluid. We show that, first, if we ignore the coupling with gravitational waves the Newtonian cosmology is exactly valid even to the second order in perturbation. Second, the pure relativistic correction terms start appearing from the third order. Third, the correction terms are independent of the horizon scale and are quite small in the large-scale near the horizon. These conclusions are based on our special (and proper) choice of variables and gauge conditions. In a complementary situation where the system is weakly relativistic but fully nonlinear (thus, far inside the horizon) we can employ the post-Newtonian approximation. We also show that in the large-scale structures the post-Newtonian effects are quite small. As a consequence, now we can rely on the Newtonian gravity in analyzing the evolution of nonlinear large-scale structures even near the horizon volume.Comment: 8 pages, no figur
    corecore