299 research outputs found

    Theory of self-induced back-action optical trapping in nanophotonic systems

    Full text link
    Optical trapping is an indispensable tool in physics and the life sciences. However, there is a clear trade off between the size of a particle to be trapped, its spatial confinement, and the intensities required. This is due to the decrease in optical response of smaller particles and the diffraction limit that governs the spatial variation of optical fields. It is thus highly desirable to find techniques that surpass these bounds. Recently, a number of experiments using nanophotonic cavities have observed a qualitatively different trapping mechanism described as "self-induced back-action trapping" (SIBA). In these systems, the particle motion couples to the resonance frequency of the cavity, which results in a strong interplay between the intra-cavity field intensity and the forces exerted. Here, we provide a theoretical description that for the first time captures the remarkable range of consequences. In particular, we show that SIBA can be exploited to yield dynamic reshaping of trap potentials, strongly sub-wavelength trap features, and significant reduction of intensities seen by the particle, which should have important implications for future trapping technologiesComment: 7 pages, 5 figure

    Low-Temperature Permittivity of Insulating Perovskite Manganites

    Full text link
    Measurements of the low-frequency (f<=100 kHz) permittivity and conductivity at T<= 150 K are reported for La(1-x)Ca(x)MnO(3) (0<=x<=1) and Ca(1-y)Sr(y)MnO(3) (0<=y<=0.75) having antiferromagnetic, insulating ground states covering a broad range of Mn valencies from Mn(3+) to Mn(4+). Static dielectric constants are determined from the low-T limiting behavior. With increasing T, relaxation peaks associated with charge-carrier hopping are observed in the real part of the permittivities and analyzed to determine dopant binding energies. The data are consistent with a simple model of hydrogenic impurity levels and imply effective masses m*/m_e~3 for the Mn(4+) compounds. Particularly interesting is a large dielectric constant (~100) associated with the C-type antiferromagnetic state near the composition La(0.2)Ca(0.8)MnO(3).Comment: 6 pages, 8 figures, PRB in pres

    Impurity Conduction and Magnetic Polarons in Antiferromagnetic Oxides

    Full text link
    Low-temperature transport and magnetization measurements for the antiferromagnets SrMnO(3) and CaMnO(3) identify an impurity band of mobile states separated by energy E from electrons bound in Coulombic potentials. Very weak electric fields are sufficient to excite bound electrons to the impurity band, increasing the mobile carrier concentration by more than three orders of magnitude. The data argue against the formation of self-trapped magnetic polarons (MPs) predicted by theory, and rather imply that bound MPs become stable only for kT<<E.Comment: 4 pp., 4 fig

    Heat Conduction and Magnetic Phase Behavior in Electron-Doped Ca_{1-x} La_x MnO_3(0 <= x <= 0.2)

    Full text link
    Measurements of thermal conductivity (kappa) vs temperature are reported for a series of Ca_{1-x} La_x MnO_3(0 <= x <= 0.2) specimens. For the undoped (x=0), G-type antiferromagnetic compound a large enhancement of kappa below the Neel temperature (T_N ~ 125 K) indicates a strong coupling of heat-carrying phonons to the spin system. This enhancement exhibits a nonmonotonic behavior with increasing x and correlates remarkably well with the small ferromagnetic component of the magnetization reported previously [Neumeier and Cohn, Phys. Rev. B 61 14319 (2000).] Magnetoelastic polaron formation appears to underly the behavior of kappa and the magnetization at x <= 0.02.Comment: submitted to PRB; 4 pp., 4 Fig.'s, RevTex

    Inhomogeneous magnetism in La-doped CaMnO3. (I) Nanometric-scale spin clusters and long-range spin canting

    Full text link
    Neutron measurements on Ca{1-x}La{x}MnO3 (0.00 <= x <= 0.20) reveal the development of a liquid-like spatial distribution of magnetic droplets of average size ~10 Angstroms, the concentration of which is proportional to x (one cluster per ~60 doped electrons). In addition, a long-range ordered ferromagnetic component is observed for ~0.05 < x < ~0.14. This component is perpendicularly coupled to the simple G-type antiferromagnetic (G-AFM) structure of the undoped compound, which is a signature of a G-AFM + FM spin-canted state. The possible relationship between cluster formation and the stabilization of a long-range spin-canting for intermediate doping is discussed.Comment: Submitted to Physical Review

    Coupling of phonons with orbital dynamics and magnetism in CuSb2O6

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOStrongly interacting phonons and orbital excitations are observed in the same energy range for CuSb2O6, unlocking a so-far unexplored type of electron-phonon interaction. An orbital wave at similar to 550 cm(-1) softens on warming and strongly interferes with a phonon at similar to 500 cm(-1), giving rise to a merged excitation of mixed character. An electronic continuum grows on warming to the orbital ordering temperature T-oo = 400 K, generating an important phonon decay channel. This direct and simultaneous observation of orbital and vibrational excitations reveals details of their combined dynamics. In addition, phonon frequency anomalies due to magnetic correlations are observed below similar to 150 K, much above the three-dimensional magnetic ordering temperature T-N(3D) = 8.5 K, confirming one-dimensional magnetic correlations along Cu-O-O-Cu linear chains in the paramagnetic state.971715FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2012/04870-7Sem informaçãoSem informaçãoAgências de fomento estrangeiras apoiaram essa pesquisa, mais informações acesse artig
    corecore