19 research outputs found

    A dominant gene for developmental dyslexia on chromosome 3

    No full text
    Developmental dyslexia is a neurofunctional disorder characterised by an unexpected difficulty in learning to read and write despite adequate intelligence, motivation, and education. Previous studies have suggested mostly quantitative susceptibility loci for dyslexia on chromosomes 1, 2, 6, and 15, but no genes have been identified yet. We studied a large pedigree, ascertained from 140 families considered, segregating pronounced dyslexia in an autosomal dominant fashion. Affected status and the subtype of dyslexia were determined by neuropsychological tests. A genome scan with 320 markers showed a novel dominant locus linked to dyslexia in the pericentromeric region of chromosome 3 with a multipoint lod score of 3.84. Nineteen out of 21 affected pedigree members shared this region identical by descent (corrected p<0.001). Previously implicated genomic regions showed no evidence for linkage. Sequencing of two positional candidate genes, 5HT1F and DRD3, did not support their role in dyslexia. The new locus on chromosome 3 is associated with deficits in all three essential components involved in the reading process, namely phonological awareness, rapid naming, and verbal short term memory.


Keywords: reading disability; linkage analysis; chromosome

    Guidance for Substantiating the Evidence for Beneficial Effects of Probiotics: Current Status and Recommendations for Future Research1–3,

    No full text
    Probiotic bacteria are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host. There is a growing interest in probiotics within the scientific community, with consumers, and in the food industry. The interactions between the gut and intestinal microbiota and between resident and transient microbiota define a new arena in physiology, an understanding of which would shed light on the "cross-talk" between humans and microbes. The different beneficial effects of specific probiotic strains may be translated into different health claims. However, there is a need for comprehensive and harmonized guidelines on the assessment of the characteristics and efficacy of probiotics and of foods containing them. An international expert group of ILSI has evaluated the published evidence of the functionality of different probiotics in 4 areas of (human) application: 1) metabolism, 2) chronic intestinal inflammatory and functional disorders, 3) infections, and 4) allergy. Based on the existing evidence, concrete examples of demonstration of benefits and gaps are listed, and guidelines and recommendations are defined that should help design the next generation of probiotic studie

    Probiotic factors partially prevent changes to caspases 3 and 7 activation and transepithelial electrical resistance in a model of 5-fluorouracil-induced epithelial cell damage

    No full text
    The potential efficacy of a probiotic-based preventative strategy against intestinal mucositis has yet to be investigated in detail. We evaluated supernatants (SN) from Escherichia coli Nissle 1917 (EcN) and Lactobacillus rhamnosus GG (LGG) for their capacity to prevent 5-fluorouracil (5-FU)-induced damage to intestinal epithelial cells. A 5-day study was performed. IEC-6 cells were treated daily from days 0 to 3, with 1 mL of PBS (untreated control), de Man Rogosa Sharpe (MRS) broth, tryptone soy roth (TSB), LGG SN, or EcN SN. With the exception of the untreated control cells, all groups were treated with 5-FU (5 μM) for 24 h at day 3. Transepithelial electrical resistance (TEER) was determined on days 3, 4, and 5, while activation of caspases 3 and 7 was determined on days 4 and 5 to assess apoptosis. Pretreatment with LGG SN increased TEER (p < 0.05) compared to controls at day 3. 5-FU administration reduced TEER compared to untreated cells on days 4 and 5. Pretreatment with MRS, LGG SN, TSB, and EcN SN partially prevented the decrease in TEER induced by 5-FU on day 4, while EcN SN also improved TEER compared to its TSB vehicle control. These differences were also observed at day 5, along with significant improvements in TEER in cells treated with LGG and EcN SN compared to healthy controls. 5-FU increased caspase activity on days 4 and 5 compared to controls. At day 4, cells pretreated with MRS, TSB, LGG SN, or EcN SN all displayed reduced caspase activity compared to 5-FU controls, while both SN groups had significantly lower caspase activity than their respective vehicle controls. Caspase activity in cells pretreated with MRS, LGG SN, and EcN SN was also reduced at day 5, compared to 5-FU controls. We conclude that pretreatment with selected probiotic SN could prevent or inhibit enterocyte apoptosis and loss of intestinal barrier function induced by 5-FU, potentially forming the basis of a preventative treatment modality for mucositis.Luca D. Prisciandaro, Mark S. Geier, Ann E. Chua, Ross N. Butler, Adrian G. Cummins, Guy R. Sander, Gordon S. Howart
    corecore