3 research outputs found

    Rays, intrusive growth, and storied cambium in the inflorescence stems of Arabidopsis thaliana (L.) Heynh

    Get PDF
    Arabidopsis thaliana is a model plant used in analysis of different aspects of plant growth and development. Under suitable conditions, secondary growth takes place in the hypocotyl of Arabidopsis plants, a finding which helps in understanding many aspects of xylogenesis. However, not all developmental processes of secondary tissue can be studied here, as no secondary rays and intrusive growth have been detected in hypocotyl. However, results presented here concerning the secondary growth in inflorescence stems of Arabidopsis shows that both secondary rays and intrusive growth of cambial cells can be detected, and that, in the interfascicular regions, a storied cambium can be developed

    Secondary protective tissue of forest trees

    No full text
    This paper reviews the structure and formation of periderm and rhytidome in organs both of coniferous and broadleaves trees, in respect to their protective role. The periderm, which is composed of three tissues such as meristematic phellogen giving rise to suberized phellem at the outer side and phelloderm at the inner side. In older organs peridem is replaced with rhytidome composed of dead cells and included subsequent periderms separated by functioning phloem cells. Additionally, the structure and classification of lenticel as well as development of cork wings is described

    Contribution of wood cells death to evolutionary success of woody plants

    No full text
    The paper describes the different types of cell death during the process of wood cell formation and terminological variety found in the literature concerned. The cell death referred to as programmed cell death (PCD), is genetically controlled and fundamental for the correct function of the whole organism of woody plants. The wood is mainly composed of the tracheary elements fulfil as conductors of water, fibers that provide the mechanical support and parenchyma cells playing an important role in the storage of water and reserve materials. The PCD of these elements constitutes the final stage of their differentiation and it is proceeded by: (i) cambial cell divisions, (ii) the enlargement of the cambial derivatives. The successive phase concerns (iii) deposition of secondary cell walls and its lignification. After that, the cell commences to digest protoplast, what means that each cell participates in the process of its own demise actively. However, the time and the sequence of the appearance of these phases are distinct among the woody cells. In the case of the tracheary elements the digestion of the protoplast occurs immediately after the tonoplast breakdown. Therefore, these cells are short−lived elements of wood. The life span of the fibers and the parenchyma cells is longer (from month for fibers and years in case of parenchyma cells). For the latter cells the positional information (distance from the cambium) and vicinity with short−lived tracheary elements are considered to be important for undergoing the process of death
    corecore