89 research outputs found

    Breve resumen ó Guía explicativa del Museo Arqueológico Nacional

    Get PDF
    Copia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201

    Sexual selection drives weak positive selection in protamine genes and high promoter divergence, enhancing sperm competitiveness

    Get PDF
    Phenotypic adaptations may be the result of changes in gene structure or gene regulation, but little is known about the evolution of gene expression. In addition, it is unclear whether the same selective forces may operate at both levels simultaneously. Reproductive proteins evolve rapidly, but the underlying selective forces promoting such rapid changes are still a matter of debate. In particular, the role of sexual selection in driving positive selection among reproductive proteins remains controversial, whereas its potential influence on changes in promoter regions has not been explored. Protamines are responsible for maintaining DNA in a compacted form in chromosomes in sperm and the available evidence suggests that they evolve rapidly. Because protamines condense DNA within the sperm nucleus, they influence sperm head shape. Here, we examine the influence of sperm competition upon protamine 1 and protamine 2 genes and their promoters, by comparing closely related species of Mus that differ in relative testes size, a reliable indicator of levels of sperm competition. We find evidence of positive selection in the protamine 2 gene in the species with the highest inferred levels of sperm competition. In addition, sperm competition levels across all species are strongly associated with high divergence in protamine 2 promoters that, in turn, are associated with sperm swimming speed. We suggest that changes in protamine 2 promoters are likely to enhance sperm swimming speed by making sperm heads more hydrodynamic. Such phenotypic changes are adaptive because sperm swimming speed may be a major determinant of fertilization success under sperm competition. Thus, when species have diverged recently, few changes in gene-coding sequences are found, while high divergence in promoters seems to be associated with the intensity of sexual selection

    Sexual selection drives weak positive selection in protamine genes and high promoter divergence, enhancing sperm competitiveness

    Get PDF
    Phenotypic adaptations may be the result of changes in gene structure or gene regulation, but little is known about the evolution of gene expression. In addition, it is unclear whether the same selective forces may operate at both levels simultaneously. Reproductive proteins evolve rapidly, but the underlying selective forces promoting such rapid changes are still a matter of debate. In particular, the role of sexual selection in driving positive selection among reproductive proteins remains controversial, whereas its potential influence on changes in promoter regions has not been explored. Protamines are responsible for maintaining DNA in a compacted form in chromosomes in sperm and the available evidence suggests that they evolve rapidly. Because protamines condense DNA within the sperm nucleus, they influence sperm head shape. Here, we examine the influence of sperm competition upon protamine 1 and protamine 2 genes and their promoters, by comparing closely related species of Mus that differ in relative testes size, a reliable indicator of levels of sperm competition. We find evidence of positive selection in the protamine 2 gene in the species with the highest inferred levels of sperm competition. In addition, sperm competition levels across all species are strongly associated with high divergence in protamine 2 promoters that, in turn, are associated with sperm swimming speed. We suggest that changes in protamine 2 promoters are likely to enhance sperm swimming speed by making sperm heads more hydrodynamic. Such phenotypic changes are adaptive because sperm swimming speed may be a major determinant of fertilization success under sperm competition. Thus, when species have diverged recently, few changes in gene-coding sequences are found, while high divergence in promoters seems to be associated with the intensity of sexual selection

    Souffles (1966-1971) : una revista de arte, cultura y política desde Marruecos

    Get PDF
    Edición y traducción realizada para la actividad "Documentos 17. Souffles (1966-1971). Una revista de arte, cultura y política desde Marruecos", realizada en el Museo Reina Sofía el 8 de abril de 2021.Resumen: Documento que realiza un análisis de la revista cultural marroquí Souffles. Dirigida por el poeta Abdellatif Laâbi, reunió desde 1966 hasta su prohibición (a inicios de 1972) a las voces más relevantes de la poesía, del arte y del pensamiento del Magreb poscolonial

    Novel Strains of Mice Deficient for the Vesicular Acetylcholine Transporter: Insights on Transcriptional Regulation and Control of Locomotor Behavior

    Get PDF
    Defining the contribution of acetylcholine to specific behaviors has been challenging, mainly because of the difficulty in generating suitable animal models of cholinergic dysfunction. We have recently shown that, by targeting the vesicular acetylcholine transporter (VAChT) gene, it is possible to generate genetically modified mice with cholinergic deficiency. Here we describe novel VAChT mutant lines. VAChT gene is embedded within the first intron of the choline acetyltransferase (ChAT) gene, which provides a unique arrangement and regulation for these two genes. We generated a VAChT allele that is flanked by loxP sequences and carries the resistance cassette placed in a ChAT intronic region (FloxNeo allele). We show that mice with the FloxNeo allele exhibit differential VAChT expression in distinct neuronal populations. These mice show relatively intact VAChT expression in somatomotor cholinergic neurons, but pronounced decrease in other cholinergic neurons in the brain. VAChT mutant mice present preserved neuromuscular function, but altered brain cholinergic function and are hyperactive. Genetic removal of the resistance cassette rescues VAChT expression and the hyperactivity phenotype. These results suggest that release of ACh in the brain is normally required to “turn down” neuronal circuits controlling locomotion
    corecore