7 research outputs found

    Exon sequence requirements for excision in vivo of the bacterial group II intron RmInt1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group II intron splicing proceeds through two sequential transesterification reactions in which the 5' and 3'-exons are joined together and the lariat intron is released. The intron-encoded protein (IEP) assists the splicing of the intron <it>in vivo </it>and remains bound to the excised intron lariat RNA in a ribonucleoprotein particle (RNP) that promotes intron mobility. Exon recognition occurs through base-pairing interactions between two guide sequences on the ribozyme domain dI known as EBS1 and EBS2 and two stretches of sequence known as IBS1 and IBS2 on the 5' exon, whereas the 3' exon is recognized through interaction with the sequence immediately upstream from EBS1 [(δ-δ' interaction (subgroup IIA)] or with a nucleotide [(EBS3-IBS3 interaction (subgroup IIB and IIC))] located in the coordination-loop of dI. The δ nucleotide is involved in base pairing with another intron residue (δ') in subgroup IIB introns and this interaction facilitates base pairing between the 5' exon and the intron.</p> <p>Results</p> <p>In this study, we investigated nucleotide requirements in the distal 5'- and 3' exon regions, EBS-IBS interactions and δ-δ' pairing for excision of the group IIB intron RmInt1 <it>in vivo</it>. We found that the EBS1-IBS1 interaction was required and sufficient for RmInt1 excision. In addition, we provide evidence for the occurrence of canonical δ-δ' pairing and its importance for the intron excision <it>in vivo.</it></p> <p>Conclusions</p> <p>The excision <it>in vivo </it>of the RmInt1 intron is a favored process, with very few constraints for sequence recognition in both the 5' and 3'-exons. Our results contribute to understand how group II introns spread in nature, and might facilitate the use of RmInt1 in gene targeting.</p

    Localization of a bacterial group II intron-encoded protein in human cells

    Get PDF
    Group II introns are mobile retroelements that self-splice from precursor RNAs to form ribonucleoparticles (RNP), which can invade new specific genomic DNA sites. This specificity can be reprogrammed, for insertion into any desired DNA site, making these introns useful tools for bacterial genetic engineering. However, previous studies have suggested that these elements may function inefficiently in eukaryotes. We investigated the subcellular distribution, in cultured human cells, of the protein encoded by the group II intron RmInt1 (IEP) and several mutants. We created fusions with yellow fluorescent protein (YFP) and with a FLAG epitope. We found that the IEP was localized in the nucleus and nucleolus of the cells. Remarkably, it also accumulated at the periphery of the nuclear matrix. We were also able to identify spliced lariat intron RNA, which co-immunoprecipitated with the IEP, suggesting that functional RmInt1 RNPs can be assembled in cultured human cells.This work was supported by research grants CSD 2009–0006 from the Consolider-Ingenio, BIO2011-24401 and BIO2014-51953-P from the Spanish Ministerio de Economía y Competitividad all including ERDF (European Regional Development Funds). We thank Dr. Antonio Barrientos Durán for technical advice. MRC was supported by an FPI Ph.D grant. J.L.G.P´s laboratory is supported by CICE-FEDER-P09-CTS-4980, CICE-FEDER-P12-CTS-2256, Plan Nacional de I+D+I 2008–2011 and 2013–2016 (FIS-FEDER-PI11/01489 and FIS-FEDER-PI14/02152), PCIN-2014-115-ERA-NET NEURON II, the European Research Council (ERC-Consolidator ERC-STG-2012-233764) and by an International Early Career Scientist grant from the Howard Hughes Medical Institute (IECS-55007420).Peer Reviewe

    NRAS-mutant melanoma: current challenges and future prospect

    No full text
    Eva Mu&ntilde;oz-Couselo,1,2 Ester Zamora Adelantado,1,2 Carolina Ortiz,1,2 Jes&uacute;s Soberino Garc&iacute;a,3 Jos&eacute; Perez-Garcia31Medical Oncology Department, Vall d&rsquo;Hebron Hospital, Barcelona, Spain; 2Vall d&rsquo;Hebron Institute of Oncology (VHIO), Barcelona, Spain; 3Baselga Institute of Oncology, Hospital Quir&oacute;n, Barcelona,&nbsp;SpainAbstract: Melanoma is one of the most common cutaneous cancers worldwide. Activating mutations in RAS oncogenes are found in a third of all human cancers and NRAS mutations are found in 15%&ndash;20% of melanomas. The NRAS-mutant subset of melanoma is more aggressive and associated with poorer outcomes, compared to non-NRAS-mutant melanoma. Although immune checkpoint inhibitors and targeted therapies for BRAF-mutant melanoma are transforming the treatment of metastatic melanoma, the ideal treatment for NRAS-mutant melanoma remains unknown. Despite promising preclinical data, current therapies for NRAS-mutant melanoma remain limited, showing a modest increase in progression-free survival but without any benefit in overall survival. Combining MEK inhibitors with agents inhibiting cell cycling and the PI3K&ndash;AKT pathway appears to provide additional benefit; in particular, a strategy of MEK inhibition and CDK4/6 inhibition is likely to be a viable treatment option in the future. Patients whose tumors had NRAS mutations had better response to immunotherapy and better outcomes than patients whose tumors had other genetic subtypes, suggesting that immune therapies &ndash; especially immune checkpoint inhibitors &ndash; may be particularly effective as treatment options for NRAS-mutant melanoma. Improved understanding of NRAS-mutant melanoma will be essential to develop new treatment strategies for this subset of patients with melanoma.Keywords: metastatic melanoma, NRAS mutation, MEK inhibitor, immunotherapy, trametinib, binimetini

    Spread of the group II intron RmInt1 and its insertion sequence target sites in the plant endosymbiont Sinorhizobium meliloti

    No full text
    RmInt1 is a mobile group II intron from Sinorhizobium meliloti that is exceptionally abundant in this bacterial species. We compared the presence of RmInt1 and two of its insertion sequence homing sites (ISRm2011-2 and ISRm10-2) in two phylogenetic clusters (I and II) identified by AFLP analysis in a collection of S. meliloti field isolates from Italy. Both clusters contained several copies of the ISRm2011-2 element, which is present at high copy number in almost all S. meliloti isolates. By contrast, isolates from cluster I harbored no copies of ISRm10-2 and only a truncated copy of RmInt1, despite the absence of constraints on intron mobility in this genetic background, whereas cluster II strains harbored several copies of this intron. The absence of ISRm10-2 from one of the strains of this cluster suggests that this element was acquired more recently than the other two elements. Furthermore, studies of insertional polymorphisms in cluster II strains revealed the acquisition of ISRm10-2 and subsequent retrohoming of RmInt1 to this homing site. These results highlight the role of intron homing sites (ISs) in facilitating intron dispersal and the dynamic and ongoing nature of the spread of the group II intron RmInt1 in S. meliloti

    Long-term effect of a practice-based intervention (HAPPY AUDIT) aimed at reducing antibiotic prescribing in patients with respiratory tract infections

    No full text
    corecore