9,281 research outputs found

    Critical behavior of charmonia across the phase transition: A QCD sum rule approach

    Full text link
    We investigate medium-induced change of mass and width of J/psi and eta_c across the phase transition in hot gluonic matter using QCD sum rules. In the QCD sum rule approach, the medium effect on heavy quarkonia is induced by the change of both scalar and twist-2 gluon condensates, whose temperature dependences are extracted from the lattice calculations of energy density and pressure. Although the stability of the operator product expansion side seems to break down at T > 1.06Tc for the vector channel and T>1.04Tc for the pseudoscalar channel, we find a sudden change of the spectral property across the critical temperature Tc, which originates from an equally rapid change of the scalar gluon condensate characterized by e-3p. By parameterizing the ground state of the spectral density by the Breit-Wigner form, we find that for both J/psi and eta_c, the masses suddenly decrease maximally by a few hundreds of MeV and the widths broaden to ~100 MeV slightly above Tc. Implications for recent and future heavy ion experiments are discussed. We also carry out a similar analysis for charmonia in nuclear matter, which could serve as a testing ground for observing the precursor phenomena of the QCD phase transition. We finally discuss the possibility of observing the mass shift at nuclear matter at the FAIR project at GSI.Comment: 18 pages, 21 figures, 2 figures are added and discussion on effect of dynamical quarks is extended. version to appear in Phys.Rev.

    Optimum design of magnetic field environment for axonal growth control in nerve cell regeneration process using electromagnetic field analyses

    Get PDF
    In this study, an optimum magnetic field environment for the nerve axonal extension and control of axonal growth direction in the nerve cell generation process was searched by using electromagnetic finite element analyses. Recently, the developments of 3D-scaffold structures employing biodegradable polymers have been an attracting attention for the clinical treatments of damaged nerve tissues. The magnetic stimulation is introduced to accelerate the regeneration speed of nerve axon inside the 3D-scaffold. According to experimental observation of Blackman, C.F. and his research group (1993) [1], it was found that 50 Hz AC magnetic field has promoted the regeneration of axonal extension in the case of pheochromocytoma cells (PC12). They identified the optimum configuration of the coil and the threshold value of driving current for the initiation of PC12 axon growth. However, they did not evaluate analytically the magnetic flux density and the magnetic field in the cell culture liquid for the PC12 axon growth initiation. Therefore, at first we employed the electromagnetic finite element analyses (FEA) to evaluate the magnetic flux density in the case of Blackman’s experiment. Simultaneously, we identified the relative magnetic permeability of Dulbecco’s Modified Eagle Medium (DMEM) as 1.01 at 50 Hz. Finally, we obtained the value of magnetic flux density inside DMEM as 4.2 T. Next, we try to design the configuration of Helmholtz coil, which can generate an optimum magnetic field to stimulate most effectively for PC12 axon extension. It is confirmed that the magnetic field gradient affect the extensional speed of PC12 axon, which can be achieved by setup the one peripheral coil and two coils at the center. We found an optimum configuration of Helmholtz coil to generate the magnetic field environment and fabricate an experimental bioreactor for PC12 cell culture. We examined the effectiveness of magnetic stimulation for PC12 nerve axon’s extension quantitatively. Further, we try to find the relationship between the magnetic field gradient and the direction of nerve axon’s extension

    Nucleus from String Theory

    Full text link
    In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass number (A) dependence r A^{1/3} for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multi-baryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1) x A^{1/3} [fm], which is consistent with experiments.Comment: 4 pages; Ver.2: terminology on nuclear density saturation modified, a reference adde

    ALMA Temporal Phase Stability and the Effectiveness of Water Vapor Radiometer

    Full text link
    Atacama Large Millimeter/submillimeter Array (ALMA) will be the world largest mm/submm interferometer, and currently the Early Science is ongoing, together with the commissioning and science verification (CSV). Here we present a study of the temporal phase stability of the entire ALMA system from antennas to the correlator. We verified the temporal phase stability of ALMA using data, taken during the last two years of CSV activities. The data consist of integrations on strong point sources (i.e., bright quasars) at various frequency bands, and at various baseline lengths (up to 600 m). From the observations of strong quasars for a long time (from a few tens of minutes, up to an hour), we derived the 2-point Allan Standard Deviation after the atmospheric phase correction using the 183 GHz Water Vapor Radiometer (WVR) installed in each 12 m antenna, and confirmed that the phase stability of all the baselines reached the ALMA specification. Since we applied the WVR phase correction to all the data mentioned above, we also studied the effectiveness of the WVR phase correction at various frequencies, baseline lengths, and weather conditions. The phase stability often improves a factor of 2 - 3 after the correction, and sometimes a factor of 7 improvement can be obtained. However, the corrected data still displays an increasing phase fluctuation as a function of baseline length, suggesting that the dry component (e.g., N2 and O2) in the atmosphere also contributes the phase fluctuation in the data, although the imperfection of the WVR phase correction cannot be ruled out at this moment.Comment: Proc. SPIE 8444-125, in press (7 pages, 4 figures, 1 table

    The Revealing Dust: Mid-Infrared Activity in Hickson Compact Group Galaxy Nuclei

    Full text link
    We present a sample of 46 galaxy nuclei from 12 nearby (z<4500 km/s) Hickson Compact Groups (HCGs) with a complete suite of 1-24 micron 2MASS+Spitzer nuclear photometry. For all objects in the sample, blue emission from stellar photospheres dominates in the near-IR through the 3.6 micron IRAC band. Twenty-five of 46 (54%) galaxy nuclei show red, mid-IR continua characteristic of hot dust powered by ongoing star formation and/or accretion onto a central black hole. We introduce alpha_{IRAC}, the spectral index of a power-law fit to the 4.5-8.0 micron IRAC data, and demonstrate that it cleanly separates the mid-IR active and non-active HCG nuclei. This parameter is more powerful for identifying low to moderate-luminosity mid-IR activity than other measures which include data at rest-frame lambda<3.6 micron that may be dominated by stellar photospheric emission. While the HCG galaxies clearly have a bimodal distribution in this parameter space, a comparison sample from the Spitzer Nearby Galaxy Survey (SINGS) matched in J-band total galaxy luminosity is continuously distributed. A second diagnostic, the fraction of 24 micron emission in excess of that expected from quiescent galaxies, f_{24D}, reveals an additional 3 nuclei to be active at 24 micron. Comparing these two mid-IR diagnostics of nuclear activity to optical spectroscopic identifications from the literature reveals some discrepancies, and we discuss the challenges of distinguishing the source of ionizing radiation in these and other lower luminosity systems. We find a significant correlation between the fraction of mid-IR active galaxies and the total HI mass in a group, and investigate possible interpretations of these results in light of galaxy evolution in the highly interactive system of a compact group environment.Comment: 20 pages, 17 figures (1 color), uses emulateapj. Accepted for publication by Ap

    Cluster Variation Approach to the Random-Anisotropy Blume-Emery-Griffiths Model

    Full text link
    The random--anisotropy Blume--Emery--Griffiths model, which has been proposed to describe the critical behavior of 3^3He--4^4He mixtures in a porous medium, is studied in the pair approximation of the cluster variation method extended to disordered systems. Several new features, with respect to mean field theory, are found, including a rich ground state, a nonzero percolation threshold, a reentrant coexistence curve and a miscibility gap on the high 3^3He concentration side down to zero temperature. Furthermore, nearest neighbor correlations are introduced in the random distribution of the anisotropy, which are shown to be responsible for the raising of the critical temperature with respect to the pure and uncorrelated random cases and contribute to the detachment of the coexistence curve from the λ\lambda line.Comment: 14 pages (plain TeX) + 12 figures (PostScript, appended), Preprint POLFIS-TH.02/9

    Surface terms on the Nishimori line of the Gaussian Edwards-Anderson model

    Full text link
    For the Edwards-Anderson model we find an integral representation for some surface terms on the Nishimori line. Among the results are expressions for the surface pressure for free and periodic boundary conditions and the adjacency pressure, i.e., the difference between the pressure of a box and the sum of the pressures of adjacent sub-boxes in which the box can been decomposed. We show that all those terms indeed behave proportionally to the surface size and prove the existence in the thermodynamic limit of the adjacency pressure.Comment: Final version with minor corrections. To appear in Journal of Statistical Physic

    Field Theory in Noncommutative Minkowski Superspace

    Full text link
    There is much discussion of scenarios where the space-time coordinates x^\mu are noncommutative. The discussion has been extended to include nontrivial anticommutation relations among spinor coordinates in superspace. A number of authors have studied field theoretical consequences of the deformation of N=1 superspace arising from nonanticommutativity of coordinates \theta, while leaving \bar{theta}'s anticommuting. This is possible in Euclidean superspace only. In this note we present a way to extend the discussion by making both \theta and \bar{theta} coordinates non-anticommuting in Minkowski superspace. We present a consistent algebra for the supercoordinates, find a star-product, and give the Wess-Zumino Lagrangian L_{WZ} within our model. It has two extra terms due to non(anti)commutativity. The Lagrangian in Minkowski superspace is always manifestly Hermitian and for L_{WZ} it preserves Lorentz invariance.Comment: 8 pages, added references, two-column format, published in PR

    Bending and springback prediction method based on multi-scale finite element analyses for high bendability and low springback sheet generation

    Get PDF
    In this study, a sheet bendability and springback property evaluation technology through bending test simulations is newly developed using our multi-scale finite element analysis code, which is based on the crystallographic homogenization method

    BRST invariant Lagrangian of spontaneously broken gauge theories in noncommutative geometry

    Get PDF
    The quantization of spontaneously broken gauge theories in noncommutative geometry(NCG) has been sought for some time, because quantization is crucial for making the NCG approach a reliable and physically acceptable theory. Lee, Hwang and Ne'eman recently succeeded in realizing the BRST quantization of gauge theories in NCG in the matrix derivative approach proposed by Coquereaux et al. The present author has proposed a characteristic formulation to reconstruct a gauge theory in NCG on the discrete space M4Ă—ZNM_4\times Z_{_N}. Since this formulation is a generalization of the differential geometry on the ordinary manifold to that on the discrete manifold, it is more familiar than other approaches. In this paper, we show that within our formulation we can obtain the BRST invariant Lagrangian in the same way as Lee, Hwang and Ne'eman and apply it to the SU(2)Ă—\timesU(1) gauge theory.Comment: RevTeX, page
    • …
    corecore