186 research outputs found
An oil pipeline design problem
Copyright @ 2003 INFORMSWe consider a given set of offshore platforms and onshore wells producing known (or estimated) amounts of oil to be connected to a port. Connections may take place directly between platforms, well sites, and the port, or may go through connection points at given locations. The configuration of the network and sizes of pipes used must be chosen to minimize construction costs. This problem is expressed as a mixed-integer program, and solved both heuristically by Tabu Search and Variable Neighborhood Search methods and exactly by a branch-and-bound method. Two new types of valid inequalities are introduced. Tests are made with data from the South Gabon oil field and randomly generated problems.The work of the first author was supported by NSERC grant #OGP205041. The work of the second author was supported by FCAR (Fonds pour la Formation des Chercheurs et lâAide Ă la Recherche) grant #95-ER-1048, and NSERC grant #GP0105574
Using network-flow techniques to solve an optimization problem from surface-physics
The solid-on-solid model provides a commonly used framework for the
description of surfaces. In the last years it has been extended in order to
investigate the effect of defects in the bulk on the roughness of the surface.
The determination of the ground state of this model leads to a combinatorial
problem, which is reduced to an uncapacitated, convex minimum-circulation
problem. We will show that the successive shortest path algorithm solves the
problem in polynomial time.Comment: 8 Pages LaTeX, using Elsevier preprint style (macros included
Performance of field-emitting resonating carbon nanotubes as radio-frequency demodulators
International audienceWe report on a systematic study of the use of resonating nanotubes in a field emission (FE) configuration to demodulate radio frequency signals. We particularly concentrate on how the demodulation depends on the variation of the field amplification factor during resonance. Analytical formulas describing the demodulation are derived as functions of the system parameters. Experiments using AM and FM demodulations in a transmission electron microscope are also presented with a determination of all the pertinent experimental parameters. Finally we discuss the use of CNTs undergoing FE as nanoantennae and the different geometries that could be used for optimization and implementation. © 2011 American Physical Society
On Tackling the Limits of Resolution in SAT Solving
The practical success of Boolean Satisfiability (SAT) solvers stems from the
CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a
propositional proof complexity perspective, CDCL is no more powerful than the
resolution proof system, for which many hard examples exist. This paper
proposes a new problem transformation, which enables reducing the decision
problem for formulas in conjunctive normal form (CNF) to the problem of solving
maximum satisfiability over Horn formulas. Given the new transformation, the
paper proves a polynomial bound on the number of MaxSAT resolution steps for
pigeonhole formulas. This result is in clear contrast with earlier results on
the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper
also establishes the same polynomial bound in the case of modern core-guided
MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard
for CDCL SAT solvers, show that these can be efficiently solved with modern
MaxSAT solvers
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
- âŠ