59 research outputs found
Algorithms for flows over time with scheduling costs
Flows over time have received substantial attention from both an optimization and (more recently) a game-theoretic perspective. In this model, each arc has an associated delay for traversing the arc, and a bound on the rate of flow entering the arc; flows are time-varying. We consider a setting which is very standard within the transportation economic literature, but has received little attention from an algorithmic perspective. The flow consists of users who are able to choose their route but also their departure time, and who desire to arrive at their destination at a particular time, incurring a scheduling cost if they arrive earlier or later. The total cost of a user is then a combination of the time they spend commuting, and the scheduling cost they incur. We present a combinatorial algorithm for the natural optimization problem, that of minimizing the average total cost of all users (i.e., maximizing the social welfare). Based on this, we also show how to set tolls so that this optimal flow is induced as an equilibrium of the underlying game
Hybrid Meta-heuristics with VNS and Exact Methods: Application to Large Unconditional and Conditional Vertex p-Centre Problems
Large-scale unconditional and conditional vertex p-centre problems are solved using two meta-heuristics. One is based on a three-stage approach whereas the other relies on a guided multi-start principle. Both methods incorporate Variable Neighbourhood Search, exact method, and aggregation techniques. The methods are assessed on the TSP dataset which consist of up to 71,009 demand points with p varying from 5 to 100. To the best of our knowledge, these are the largest instances solved for unconditional and conditional vertex p-centre problems. The two proposed meta-heuristics yield competitive results for both classes of problems
Neighbourhood Reduction in Global and Combinatorial Optimization: The Case of the p-Centre Problem
Neighbourhood reductions for a class of location problems known as the vertex (or discrete) and planar (or continuous) p-centre problems are presented. A brief review of these two forms of the p-centre problem is first provided followed by those respective reduction schemes that have shown to be promising. These reduction schemes have the power of transforming optimal or near optimal methods such as metaheuristics or relaxation-based procedures, which were considered relatively slow, into efficient and exciting ones that are now able to find optimal solutions or tight lower/upper bounds for larger instances. Research highlights of neighbourhood reduction for global and combinatorial optimisation problems in general and for related location problems in particular are also given
- …