11,329 research outputs found

    Does Imprisonment Have an Effect on Crime Rates?

    Full text link
    Since the 1790s, prisons in the United States were built with the means of reducing crime rates through the usage of incapacitation, deterrence, and rehabilitation. However, while it may seem intuitive to assume that higher incarceration rates yield lower crime rates, it is not regularly the case. Using the 2016 States dataset, I examine the effects of incarceration rates and its influence on crime rates in the United States; I suggest that states with higher incarceration rates will have higher crime rates than states with lower incarceration rates. Therefore, the evidence concludes states with high incarceration rates generate higher rates of violent, murder, property, and burglary crime rates than states with lower incarceration rates. However, the impact is relatively low. Conclusively, while there is a positive relationship between incarceration rates and crimes rates, the correlation is not strong nor consistent enough to make a solid argument; rather, the data suggest other factors, such as the education, per capita income and unemployment rate, are contributors to the rise of crime, thus, further research needs to be taken into consideration because incarceration rates cannot be the sole explanation as to why there is an increase of crime rates throughout the United States

    Magnetotunneling in a Two-Dimensional Electron-Hole System Near Equilibrium

    Get PDF
    We have measured the zero-bias differential tunneling conductance of InAs/AlSb/GaS b/AlSb/InAs heterostructures at low temperatures (1.7K < T < 60K) and unde r a magnetic field at various angles with the heterostructure's interfaces. Shubni kov-de Haas oscillations in the magnetoconductance reveal the two-dimensional (2D) character of the electrons accumulated at the InAs interfaces and yield their num ber in each of them. The temperature dependence of the oscillations suggests the f ormation of a field-induced energy gap at the Fermi level, similar to that observe d before in simpler 2D-2D tunneling systems. A calculation of the magnetoconductan ce that considers different 2D densities in the two InAs electrodes agrees with th e main observations, but fails to explain features that might be related to the pr esence of 2D holes in the GaSb region.Comment: 4 papes, 3 eps figures. Submit to Phys. Rev.

    Faint blue objects on the Hubble Deep Field North & South as possible nearby old halo white dwarfs

    Full text link
    Using data derived from the deepest and finest angular resolution images of the universe yet acquired by astronomers at optical wavelengths using the Hubble Space Telescope (HST) in two postage-stamp sections of the sky (Williams et al. 1996a,b), plus simple geometrical and scaling arguments, we demonstrate that the faint blue population of point-source objects detected on those two fields (M\'endez et al. 1996) could actually be ancient halo white dwarfs at distances closer than about 2 kpc from the Sun. This finding has profound implications, as the mass density of the detected objects would account for about half of the missing dark matter in the Milky-Way (Bahcall and Soneira 1980), thus solving one of the most controversial issues of modern astrophysics (Trimble 1987, Ashman 1992). The existence of these faint blue objects points to a very large mass locked into ancient halo white dwarfs. Our estimate indicates that they could account for as much as half of the dark matter in our Galaxy, confirming the suggestions of the MACHO microlensing experiment (Alcock et al. 1997). Because of the importance of this discovery, deep follow-up observations with HST within the next two years would be needed to determine more accurately the kinematics (tangential motions) for these faint blue old white dwarfs.Comment: Accepted for publication on The Astrophysical Journal, Part 1. 8 pages (AAS Latex macros V4.0), 1 B&W postscript figure, 2 color postscript figure

    Geometrical and spectral study of beta-skeleton graphs

    No full text
    We perform an extensive numerical analysis of beta-skeleton graphs, a particular type of proximity graphs. In beta-skeleton graph (BSG) two vertices are connected if a proximity rule, that depends of the parameter beta is an element of (0, infinity), is satisfied. Moreover, for beta > 1 there exist two different proximity rules, leading to lune-based and circle-based BSGs. First, by computing the average degree of large ensembles of BSGs we detect differences, which increase with the increase of beta, between lune-based and circle-based BSGs. Then, within a random matrix theory (RMT) approach, we explore spectral and eigenvector properties of random BSGs by the use of the nearest-neighbor energy-level spacing distribution and the entropic eigenvector localization length, respectively. The RMT analysis allows us to conclude that a localization transition occurs at beta = 1

    Unusual Tunneling Characteristics of Double-quantum-well Heterostructures

    Get PDF
    We report tunneling phenomena in double In0.53_{0.53}Ga0.47_{0.47}As quantum-well structures that are at odds with the conventional parallel-momentum-conserving picture of tunneling between two-dimensional systems. We found that the tunneling current was mostly determined by the correlation between the emitter and the state in one well, and not by that between those in both wells. Clear magnetic-field-dependent features were first observed before the main resonance, corresponding to tunneling channels into the Landau levels of the well near the emitter. These facts provide evidence of the violation of in-plane momentum conservation in two-dimensional systems.Comment: Submitted to ICPS-27 conference proceeding as a contributed pape
    corecore