9,386 research outputs found

    Political Pressure Deflection

    Get PDF
    Much economic policy is deliberately shifted away from direct political processes to administrative processes --- political pressure deflection. Pressure deflection poses a puzzle to standard political economy models which suggest that having policies to `sell' is valuable to politicians. The puzzle is solved here by showing that incumbents will favor pressure deflection since it can deter viability of a challenger, essentially like entry deterrence. U.S. trade policy since 1934 provides a prime example, especially antidumping law and its evolution.

    Quantum Monte Carlo study of a vortex in superfluid 4^4He and search for a vortex state in the solid

    Full text link
    We have performed a microscopic study of a straight quantized vortex line in three dimensions in condensed 4^4He at zero temperature using the Shadow Path Integral Ground State method and the fixed-phase approximation. We have characterized the energy and the local density profile around the vortex axis in superfluid 4^4He at several densities, ranging from below the equilibrium density up to the overpressurized regime. For the Onsager-Feynman (OF) phase our results are exact and represent a benchmark for other theories. The inclusion of backflow correlations in the phase improves the description of the vortex with respect to the OF phase by a large reduction of the core energy of the topological excitation. At all densities the phase with backflow induces a partial filling of the vortex core and this filling slightly increases with density. The core size slightly decreases for increasing density and the density profile has well defined density dependent oscillations whose wave vector is closer to the wave vector of the main peak in the static density response function rather than to the roton wave vector. Our results can be applied to vortex rings of large radius RR and we find good agreement with the experimental value of the energy as function of RR without any free parameter. We have studied also 4^4He above the melting density in the solid phase using the same functional form for the phase as in the liquid. We found that off-diagonal properties of the solid are not qualitatively affected by the velocity field induced by the vortex phase, both with and without backflow correlations. Therefore we find evidence that a perfect 4^4He crystal is not a marginally stable quantum solid in which rotation would be able to induce off-diagonal long-range coherence.Comment: 15 pages, 8 figure

    Entanglement spectrum of random-singlet quantum critical points

    Full text link
    The entanglement spectrum, i.e., the full distribution of Schmidt eigenvalues of the reduced density matrix, contains more information than the conventional entanglement entropy and has been studied recently in several many-particle systems. We compute the disorder-averaged entanglement spectrum, in the form of the disorder-averaged moments of the reduced density matrix, for a contiguous block of many spins at the random-singlet quantum critical point in one dimension. The result compares well in the scaling limit with numerical studies on the random XX model and is also expected to describe the (interacting) random Heisenberg model. Our numerical studies on the XX case reveal that the dependence of the entanglement entropy and spectrum on the geometry of the Hilbert space partition is quite different than for conformally invariant critical points.Comment: 11 pages, 10 figure

    Direct numerical simulation of turbulent channel flow over porous walls

    Get PDF
    We perform direct numerical simulations (DNS) of a turbulent channel flow over porous walls. In the fluid region the flow is governed by the incompressible Navier--Stokes (NS) equations, while in the porous layers the Volume-Averaged Navier--Stokes (VANS) equations are used, which are obtained by volume-averaging the microscopic flow field over a small volume that is larger than the typical dimensions of the pores. In this way the porous medium has a continuum description, and can be specified without the need of a detailed knowledge of the pore microstructure by indipendently assigning permeability and porosity. At the interface between the porous material and the fluid region, momentum-transfer conditions are applied, in which an available coefficient related to the unknown structure of the interface can be used as an error estimate. To set up the numerical problem, the velocity-vorticity formulation of the coupled NS and VANS equations is derived and implemented in a pseudo-spectral DNS solver. Most of the simulations are carried out at Reτ=180Re_\tau=180 and consider low-permeability materials; a parameter study is used to describe the role played by permeability, porosity, thickness of the porous material, and the coefficient of the momentum-transfer interface conditions. Among them permeability, even when very small, is shown to play a major role in determining the response of the channel flow to the permeable wall. Turbulence statistics and instantaneous flow fields, in comparative form to the flow over a smooth impermeable wall, are used to understand the main changes introduced by the porous material. A simulations at higher Reynolds number is used to illustrate the main scaling quantities.Comment: Revised version, with additional data and more in-depth analysi

    Protecting unparticles from the MSSM Higgs sector

    Full text link
    We construct a model of an unparticle sector consisting of a supersymmetric SU(N) gauge theory with the number of flavors in the Seiberg conformal window. We couple this sector to the MSSM via heavy messengers. The resulting low energy theory has a Higgs coupling to unparticles. The Higgs vev drives the hidden Seiberg sector to a new conformal fixed point. The coupling to the Higgs mediates supersymmetry breaking to the Seiberg sector, and breaks conformal invariance at a lower scale. The low energy theory contains light stable and metastable mesons. Higgs decay into this sector gives signatures which are similar to those of "hidden valley" models. Decays of the lightest superpartner of standard model particles into the hidden sector reveal potentially observable unparticle kinematics.Comment: References added. 11 pages, 4 figure

    Upper body balance control strategy during continuous 3D postural perturbation in young adults

    Get PDF
    We explored how changes in vision and perturbation frequency impacted upright postural control in healthy adults exposed to continuous multiaxial support-surface perturbation. Ten subjects were asked to maintain equilibrium in standing stance with eyes open (EO) and eyes closed (EC) during sinusoidal 3D rotations at 0.25 (L) and 0.50 Hz (H). We measured upper-body kinematics – head, trunk, and pelvis – and analyzed differences in horizontal displacements and roll, pitch, and yaw sways. The presence of vision significantly decreased upper-body displacements in the horizontal plane, especially at the head level, while in EC the head was the most unstable segment. H trials produced a greater segment stabilization compared to L ones in EO and EC. Analysis of sways showed that in EO participants stabilized their posture by reducing the variability of trunk angles; in H trials a sway decrease for the examined segments was observed in the yaw plane and, for the pelvis only, in the pitch plane. Our results suggest that, during continuous multiaxial perturbations, visual information induced: (i) in L condition, a continuous reconfiguration of multi-body-segments orientation to follow the perturbation; (ii) in H condition, a compensation for the ongoing perturbation. These findings were not confirmed in EC where the same strategy – that is, the use of the pelvis as a reference frame for the body balance was adopted both in L and H

    Distributional effects of the Panama Canal expansion

    Get PDF
    This paper uses a dynamic macro-micro framework to evaluate the potential distributional effects of the expansion of the Panama Canal. The results show that large macroeconomic effects are only likely during the operations phase (2014 and onward), and income gains are likely to be concentrated at the top of the income distribution. The additional foreign exchange inflows during the construction and operations phases result in the loss of competitiveness of non-Canal sectors (Dutch disease) and in higher domestic prices, which hurt the poorest consumers. In addition, the construction and operation activities increase demand for more educated non-farm formal workers. Although these changes encourage additional labor movement out of agriculture and from the informal to the formal sector, much of the impact is manifested in growing wage disparities and widening income inequality. Using the additional revenues of the Canal expansion in a targeted cash transfer program such as"Red de Oportunidades", the Government of Panama could offset the adverse distributional effects and eradicate extreme poverty.Economic Theory&Research,Labor Policies,Markets and Market Access,Labor Markets,Emerging Markets

    Can Maquila Booms Reduce Poverty? Evidence from Honduras

    Get PDF
    This paper identifies and estimates the strength of the reduction in poverty linked to improved opportunities for women in the expanding maquila sector. A simulation exercise shows that, at a given point in time, poverty in Honduras would have been 1.5 percentage points higher had the maquila sector not existed. Of this increase in poverty, 0.35 percentage points is attributable to the wage premium paid to maquila workers, 0.1 percentage points to the wage premium received by women in the maquila sector, and 1 percentage point to employment creation. Given that female maquila workers represent only 1.1 percent of the active population in Honduras, this contribution to poverty reduction is significant.Trade liberalization; maquila; poverty; gender wage gap; Honduras
    • …
    corecore