169 research outputs found

    De klimaatverandering

    Get PDF

    Differential elevation of matrix metalloproteinase expression in women exposed to levonorgestrel-releasing intrauterine system for a short or prolonged period of time

    Full text link
    peer reviewedBACKGROUND: The levonorgestrel-releasing intrauterine system (LNG-IUS) is an effective contraceptive and has many non-contraceptive health benefits. However, it is commonly associated with irregular endometrial bleeding. Metalloproteinases contribute to extracellular matrix (ECM) remodelling and regulate bleeding during the menstrual cycle. Enhanced metalloproteinase expression participates in the pathogenesis of breakthrough bleeding. Thus the objective of this study was to compare matrix metalloproteinase (MMP) expression in endometrium during luteal phase and in short-term (1 month) and long-term (> or =6 months) LNG-IUS users. METHODS: MMP expression was analysed by semi-quantitative RT-PCR and immunohistochemistry. Gelatinase activity was determined by gelatin zymography. RESULTS: MMP-1, -2, -3, -7, -9 and -12 mRNAs levels were increased, whereas that of MMP-26 was decreased in the endometrium of LNG-IUS users. MMP-1, -2, -3, -7 and -9 were localized by immunohistochemistry in all biopsies in the short-term group but in only 0-27% in the control group. The incidence of positive immunostaining for MMP-2 and -3 decreased significantly in the long-term compared with short-term LNG-IUS users. MMP-26 was localized in all biopsies from the control group but in only 14 and 25% from the short- and long-term LNG-IUS groups, respectively. In both LNG groups, the numbers of macrophages (the major source of MMP-12) was increased. CONCLUSIONS: MMP-1, active MMP-2, MMP-3, MMP-7, MMP-9 and MMP-12 are more prevalent in the short-term LNG-IUS group, suggesting their important contribution to ECM breakdown and transient bleeding. The decrease in the percentage of women expressing MMP-2 and -3 might contribute to the decreased occurrence of unwanted spotting and bleeding in long-term LNG-IUS users

    Dysregulated Proinflammatory and Fibrogenic Phenotype of Fibroblasts in Cystic Fibrosis

    Get PDF
    Morbi-mortality in cystic fibrosis (CF) is mainly related to chronic lung infection and inflammation, uncontrolled tissue rearrangements and fibrosis, and yet the underlying mechanisms remain largely unknown. We evaluated inflammatory and fibrosis responses to bleomycin in F508del homozygous and wild-type mice, and phenotype of fibroblasts explanted from mouse lungs and skin. The effect of vardenafil, a cGMP-specific phosphodiesterase type 5 inhibitor, was tested in vivo and in culture. Responses of proinflammatory and fibrotic markers to bleomycin were enhanced in lungs and skin of CF mice and were prevented by treatment with vardenafil. Purified lung and skin fibroblasts from CF mice proliferated and differentiated into myofibroblasts more prominently and displayed higher sensitivity to growth factors than those recovered from wild-type littermates. Under inflammatory stimulation, mRNA and protein expression of proinflammatory mediators were higher in CF than in wild-type fibroblasts, in which CFTR expression reached similar levels to those observed in other non-epithelial cells, such as macrophages. Increased proinflammatory responses in CF fibroblasts were reduced by half with submicromolar concentrations of vardenafil. Proinflammatory and fibrogenic functions of fibroblasts are upregulated in CF and are reduced by vardenafil. This study provides compelling new support for targeting cGMP signaling pathway in CF pharmacotherapy

    Evaluation of a high-resolution regional climate simulation over Greenland

    Full text link
    A simulation of the 1991 summer has been performed over south Greenland with a coupled atmosphere–snow regional climate model (RCM) forced by the ECMWF re-analysis. The simulation is evaluated with in-situ coastal and ice-sheet atmospheric and glaciological observations. Modelled air temperature, specific humidity, wind speed and radiative fluxes are in good agreement with the available observations, although uncertainties in the radiative transfer scheme need further investigation to improve the model’s performance. In the sub-surface snow-ice model, surface albedo is calculated from the simulated snow grain shape and size, snow depth, meltwater accumulation, cloudiness and ice albedo. The use of snow metamorphism processes allows a realistic modelling of the temporal variations in the surface albedo during both melting periods and accumulation events. Concerning the surface albedo, the main finding is that an accurate albedo simulation during the melting season strongly depends on a proper initialization of the surface conditions which mainly result from winter accumulation processes. Furthermore, in a sensitivity experiment with a constant 0.8 albedo over the whole ice sheet, the average amount of melt decreased by more than 60%, which highlights the importance of a correctly simulated surface albedo. The use of this coupled atmosphere–snow RCM offers new perspectives in the study of the Greenland surface mass balance due to the represented feedback between the surface climate and the surface albedo, which is the most sensitive parameter in energy-balance-based ablation calculations.Peer reviewe

    Development of an animal experimental model to study the effects of levonorgestrel on the human endometrium

    Get PDF
    BACKGROUND: This study was designed to develop an animal model to test the response of endometrium to local progestin delivery. METHODS: Proliferative human endometrium was subcutaneously grafted in two groups of SCID mice that received, 2 days before, a subcutaneous estradiol (E2) pellet and, for half of them, an additional implant of levonorgestrel (LNG). Mice were sacrificed 1, 2, 3 or 4 weeks after endometrial implantation and grafts were histologically analysed. Proliferation, steroid hormone receptors, blood vessels and stromal decidualization in both groups (E2 and LNG) were immunohistologically evaluated and compared with proliferative endometrium and endometrium from women with an LNG intrauterine device. RESULTS: Grafts presented normal morphological endometrial characteristics. The expression of progesterone receptors was significantly decreased in glands and stroma of the LNG group as compared with the E2 group at all times. A significant decrease was also observed in the stromal expression of estrogen receptor- in the LNG group. At 4 weeks, the mean cross-sectional area of vessels was significantly higher after LNG treatment. CONCLUSIONS: These morphological and immunohistochemical characteristics are similar to those observed in women treated with local LNG. This mouse model might facilitate further investigations needed to understand the mechanisms responsible for the breakthrough bleeding frequently observed in progestin users

    Curative effect of second curettage for treatment of gestational trophoblastic disease - Results of the Belgian registry for gestational trophoblastic disease.

    Full text link
    peer reviewedOBJECTIVE: We assessed the curative effect of a second curettage in patients with persistent hCG serum levels after first curettage for a gestational trophoblastic disease (GTD). STUDY DESIGN: This prospective observational study used the data of the Belgian register for GTD between July 2012 and January 2017. We analysed the data of patients who underwent a second curettage. We included 313 patients in the database. Primary endpoints were need for second curettage and chemotherapy. RESULTS: Thirty-seven patients of the study population (12 %) underwent a second curettage. 20 had persistent human chorionic gonadotropin hormone (hCG) elevation before second curettage. Of them, 9 patients (45 %) needed no further treatment afterwards. Eleven patients (55 %) needed further chemotherapy. Nine (82 %) were cured with single-agent chemotherapy and 2 patients (18 %) needed multi-agent chemotherapy. Of the 37 patients, patients with hCG levels below 5000 IU/L undergoing a second curettage were cured without chemotherapy in 65 % versus 45 % of patients with hCG level more than 5000 IU/L. Of the ten patients with a hCG level below 1000 IU/L, eight were cured without chemotherapy. CONCLUSIONS: Patients with post-mole gestational trophoblastic neoplasia can benefit from a second curettage to avoid chemotherapy, especially when the hCG level is lower than 5000 IU/L

    Mixed origin of neovascularization of human endometrial grafts in immunodeficient mouse models

    Full text link
    peer reviewedBACKGROUND: In vivo mouse models have been developed to study the physiology of normal and pathologic endometrium. Although angiogenesis is known to play an important role in endometrial physiology and pathology, the origin of neovasculature in xenografts remains controversial. The aim of this study was to assess the origin of the neovasculature of endometrial grafts in different mouse models. METHODS: Human proliferative endometrium (n = 19 women) was grafted s.c. in two immunodeficient mouse strains: nude (n = 8) and severely compromised immunodeficient (SCID; n = 20). Mice were also treated with estradiol, progesterone or levonorgestrel. Fluorescence in-situ hybridization using a centromeric human chromosome X probe, immunohistochemistry (von Willebrand factor and collagen IV) and lectin perfusion were performed to identify the origin of the vessels. RESULTS: More than 90% of vessels within xenografts were of human origin 4 weeks after implantation. Some vessels (9.67 +/- 2.01%) were successively stained by human or mouse specific markers, suggesting the presence of chimeric vessels exhibiting a succession of human and murine portions. No difference in staining was observed between the two strains of mouse or different hormone treatments. Furthermore, erythrocytes were found inside human vessels, confirming their functionality. CONCLUSION: This article shows that human endometrial grafts retain their own vessels, which connect to the murine vasculature coming from the host tissue and become functional

    Comprehensive Analysis of Leukocytes, Vascularization and Matrix Metalloproteinases in Human Menstrual Xenograft Model

    Get PDF
    In our previous study, menstrual-like changes in mouse were provoked through the pharmacologic withdrawal of progesterone with mifepristone following induction of decidualization. However, mouse is not a natural menstruation animal, and the menstruation model using external stimuli may not truly reflect the occurrence and development of the human menstrual process. Therefore, we established a model of menstruation based on human endometrial xenotransplantation. In this model, human endometrial tissues were transplanted subcutaneously into SCID mice that were ovarectomized and supplemented with estrogen and progestogen by silastic implants with a scheme imitating the endocrinological milieu of human menstrual cycle. Morphology, hormone levels, and expression of vimentin and cytokeratin markers were evaluated to confirm the menstrual-like changes in this model. With 28 days of hormone treatment, transplanted human endometrium survived and underwent proliferation, differentiation and disintegration, similar to human endometrium in vivo. Human CD45+ cells showed a peak of increase 28 days post-transplantation. Three days after progesterone withdrawal, mouse CD45+ cells increased rapidly in number and were significantly greater than human CD45+ cell counts. Mouse CD31+ blood vascular-like structures were detected in both transplanted and host tissues. After progesterone withdrawal, the expression levels of matrix metalloproteinases (MMP) 1, 2, and 9 were increased. In summary, we successfully established a human endometrial xenotransplantation model in SCID mice, based on the results of menstrual-like changes in which MMP-1, 2 and 9 are involved. We showed that leukocytes are originated from in situ proliferation in human xenografts and involved in the occurrence of menstruation. This model will help to further understand the occurrence, growth, and differentiation of the endometrium and the underlying mechanisms of menstruation

    Endometrial apoptosis and neutrophil infiltration during menstruation exhibits spatial and temporal dynamics that are recapitulated in a mouse model.

    Get PDF
    Abstract Menstruation is characterised by synchronous shedding and restoration of tissue integrity. An in vivo model of menstruation is required to investigate mechanisms responsible for regulation of menstrual physiology and to investigate common pathologies such as heavy menstrual bleeding (HMB). We hypothesised that our mouse model of simulated menstruation would recapitulate the spatial and temporal changes in the inflammatory microenvironment of human menses. Three regulatory events were investigated: cell death (apoptosis), neutrophil influx and cytokine/chemokine expression. Well-characterised endometrial tissues from women were compared with uteri from a mouse model (tissue recovered 0, 4, 8, 24 and 48 h after removal of a progesterone-secreting pellet). Immunohistochemistry for cleaved caspase-3 (CC3) revealed significantly increased staining in human endometrium from late secretory and menstrual phases. In mice, CC3 was significantly increased at 8 and 24 h post-progesterone-withdrawal. Elastase+ human neutrophils were maximal during menstruation; Ly6G+ mouse neutrophils were maximal at 24 h. Human endometrial and mouse uterine cytokine/chemokine mRNA concentrations were significantly increased during menstrual phase and 24 h post-progesterone-withdrawal respectively. Data from dated human samples revealed time-dependent changes in endometrial apoptosis preceding neutrophil influx and cytokine/chemokine induction during active menstruation. These dynamic changes were recapitulated in the mouse model of menstruation, validating its use in menstrual research

    BRAFV600E Expression in Thyrocytes Causes Recruitment of Immunosuppressive STABILIN-1 Macrophages

    Get PDF
    Papillary thyroid carcinoma (PTC) is the most frequent histological subtype of thyroid cancers (TC), and BRAFV600E genetic alteration is found in 60% of this endocrine cancer. This oncogene is associated with poor prognosis, resistance to radioiodine therapy, and tumor progression. Histological follow-up by anatomo-pathologists revealed that two-thirds of surgically-removed thyroids do not present malignant lesions. Thus, continued fundamental research into the molecular mechanisms of TC downstream of BRAFV600E remains central to better understanding the clinical behavior of these tumors. To study PTC, we used a mouse model in which expression of BRAFV600E was specifically switched on in thyrocytes by doxycycline administration. Upon daily intraperitoneal doxycycline injection, thyroid tissue rapidly acquired histological features mimicking human PTC. Transcriptomic analysis revealed major changes in immune signaling pathways upon BRAFV600E induction. Multiplex immunofluorescence confirmed the abundant recruitment of macrophages, among which a population of LYVE-1+/CD206+/STABILIN-1+ was dramatically increased. By genetically inactivating the gene coding for the scavenger receptor STABILIN-1, we showed an increase of CD8+ T cells in this in situ BRAFV600E-dependent TC. Lastly, we demonstrated the presence of CD206+/STABILIN-1+ macrophages in human thyroid pathologies. Altogether, we revealed the recruitment of immunosuppressive STABILIN-1 macrophages in a PTC mouse model and the interest to further study this macrophage subpopulation in human thyroid tissues
    corecore