60 research outputs found
Ertüchtigung der Flachschleifmaschine ELB SF 30
Aufbauend auf dem Praktikumsbericht wird in der vorliegenden Bachelorarbeit, das Thema „Ertüchtigung der Flachschleifmaschine ELB“ weiter behandelt. Es wird dabei speziell die Einführung eines neuen Bedienpanels an der Maschine konkretisiert. Zu Beginn erfolgt die Auswahl eines geeigneten Panels, welches zu der vorhandenen Steuerung kompatibel ist. Daraufhin folgt die Vorstellung der Visualisierungssoftware, sowie der Software zum Testen der projektierten Oberfläche des Bediengerätes. Im weiteren Verlauf finden sich Erläuterungen zur Programmierung des Panels, bezogen auf das ELB-Projekt wieder. Das letzte Kapitel bezieht sich auf die konkrete SPS-Lösung zwei ausgewählter Steuerungsfunktionen, zum einen die Magnetsteuerung und zum anderen die Querantriebsteuerung
Mast cell chymase modulates IL-33 levels and controls allergic sensitization in dust-mite induced airway inflammation
Mast cells (MCs) are major effector cells contributing to allergic conditions. When activated, they can release large amounts of active proteases, including chymase from their secretory granules. Here we assessed the role of the chymase mouse mast cell protease 4 (mMCP-4) in allergic airway inflammation induced by house-dust mite (HDM) extract. mMCP-4(-/-) mice demonstrated elevated airway reactivity and eosinophilia compared with wild-type (WT) animals, suggesting a protective role for mMCP-4 during the late inflammatory phase of the disease. However, mMCP-4 also contributed to the sensitization phase, as indicated by higher levels of serum immunoglobulin E in mMCP-4(-/-) vs. WT mice and higher levels of cytokines secreted by HDM-restimulated mMCP-4(-/-) vs. WT splenocytes. In line with a contribution of mMCP-4 in the early stages of disease, HDM extract directly induced chymase secretion from MCs. The elevated airway and inflammatory responses of mMCP-4(-/-) mice were associated with a profound increase in the levels of interleukin (IL)-33 in the lung tissue. Moreover, WT MCs degraded IL-33 more efficiently than did MCs lacking mMCP-4. Together, our findings identify a protective role of a MC chymase in a physiologically relevant model for airway inflammation and suggest that chymase-mediated regulation of IL-33 can account for this protective function
Identification of arylamine N-acetyltransferase inhibitors as an approach towards novel anti-tuberculars
New anti-tubercular drugs and drug targets are urgently needed to reduce the time for treatment and also to identify agents that will be effective against Mycobacterium tuberculosis persisting intracellularly. Mycobacteria have a unique cell wall. Deletion of the gene for arylamine N-acetyltransferase (NAT) decreases mycobacterial cell wall lipids, particularly the distinctive mycolates, and also increases antibiotic susceptibility and killing within macrophage of Mycobacterium bovis BCG. The nat gene and its associated gene cluster are almost identical in sequence in M. bovis BCG and M. tuberculosis. The gene cluster is essential for intracellular survival of mycobacteria. We have therefore used pure NAT protein for high-throughput screening to identify several classes of small molecules that inhibit NAT activity. Here, we characterize one class of such molecules—triazoles—in relation to its effects on the target enzyme and on both M. bovis BCG and M. tuberculosis. The most potent triazole mimics the effects of deletion of the nat gene on growth, lipid disruption and intracellular survival. We also present the structure-activity relationship between NAT inhibition and effects on mycobacterial growth, and use ligand-protein analysis to give further insight into the structure-activity relationships. We conclude that screening a chemical library with NAT protein yields compounds that have high potential as anti-tubercular agents and that the inhibitors will allow further exploration of the biochemical pathway in which NAT is involved
- …