49,290 research outputs found
Dynamic mechanical response of polymer networks
The dynamic-mechanical response of flexible polymer networks is studied in
the framework of tube model, in the limit of small affine deformations, using
the approach based on Rayleighian dissipation function. The dynamic complex
modulus G* is calculated from the analysis of a network strand relaxation to
the new equilibrium conformation around the distorted primitive path. Chain
equilibration is achieved via a sliding motion of polymer segments along the
tube, eliminating the inhomogeneity of the polymer density caused by the
deformation. The characteristic relaxation time of this motion separates
the low-frequency limit of the complex modulus from the high-frequency one,
where the main role is played by chain entanglements, analogous to the rubber
plateau in melts. The dependence of storage and loss moduli, G' and G'', on
crosslink and entanglement densities gives an interpolation between polymer
melts and crosslinked networks. We discuss the experimental implications of the
rather short relaxation time and the slow square-root variation of the moduli
and the loss factor tan at higher frequencies.Comment: Journal of Chemical Physics (Oct-2000); Lates, 4 EPS figures include
Magnetization of a half-quantum vortex in a spinor Bose-Einstein condensate
Magnetization dynamics of a half-quantum vortex in a spin-1 Bose-Einstein
condensate with a ferromagnetic interaction are investigated by mean-field and
Bogoliubov analyses. The transverse magnetization is shown to break the
axisymmetry and form threefold domains. This phenomenon originates from the
topological structure of the half-quantum vortex and spin conservation.Comment: 6 pages, 3 figure
A new coordinate transformation for turbulent boundary layer flows
The transformation permits a uniform mesh to be used in the computational coordinate which extends across the layer. This coordinate transformation uses the local value of the skin friction coefficient to scale the thickness of the wall layer region, and the local maximum value of turbulent viscosity to scale the boundary-layer thickness. Results are presented for two dimensional boundary layers in both positive and negative pressure gradients and comparisons are made with experimental data and conventional variable-grid results for low speed turbulent boundary-layers. The cases chosen illustrate the capability of this new transformation to capture the boundary layer growth over the full extent of laminar, transitional, and turbulent flow with no grid adjustment as well as its ability to consistently enlarge the wall layer region for accurate shear stress representation. Results of mesh refinement studies using the new coordinate transformation are presented
Statistical Mechanics of Vibration-Induced Compaction of Powders
We propose a theory which describes the density relaxation of loosely packed,
cohesionless granular material under mechanical tapping. Using the compactivity
concept we develope a formalism of statistical mechanics which allows us to
calculate the density of a powder as a function of time and compactivity. A
simple fluctuation-dissipation relation which relates compactivity to the
amplitude and frequency of a tapping is proposed. Experimental data of
E.R.Nowak et al. [{\it Powder Technology} 94, 79 (1997) ] show how density of
initially deposited in a fluffy state powder evolves under carefully controlled
tapping towards a random close packing (RCP) density. Ramping the vibration
amplitude repeatedly up and back down again reveals the existence of reversible
and irreversible branches in the response. In the framework of our approach the
reversible branch (along which the RCP density is obtained) corresponds to the
steady state solution of the Fokker-Planck equation whereas the irreversible
one is represented by a superposition of "excited states" eigenfunctions. These
two regimes of response are analyzed theoretically and a qualitative
explanation of the hysteresis curve is offered.Comment: 11 pages, 2 figures, Latex. Revised tex
The properties and environment of primitive solar nebulae as deduced from observations of solar-type pre-main sequence stars
The following topics were discussed: (1) current observation evidence for the presence of circumstellar disks associated with solar type pre-main sequence (PMS) stars; (2) the properties of such disks; and (3) the disk environment
- …