301 research outputs found

    Superselection Sectors in Asymptotic Quantization of Gravity

    Get PDF
    Using the continuity of the scalar Κ2\Psi_2 (the mass aspect) at null infinity through ioi_o we show that the space of radiative solutions of general relativity can be thought of a fibered space where the value of Κ2\Psi_2 at ioi_o plays the role of the base space. We also show that the restriction of the available symplectic form to each ``fiber'' is degenerate. By finding the orbit manifold of this degenerate direction we obtain the reduced phase space for the radiation data. This reduced phase space posses a global structure, i.e., it does not distinguishes between future or past null infinity. Thus, it can be used as the space of quantum gravitons. Moreover, a Hilbert space can be constructed on each ``fiber'' if an appropriate definition of scalar product is provided. Since there is no natural correspondence between the Hilbert spaces of different foliations they define superselection sectors on the space of asymptotic quantum states.Comment: 22 pages, revtex fil

    Heart Angiotensin-Converting Enzyme and Angiotensin-Converting Enzyme 2 Gene Expression Associated With Male Sex and Salt-Sensitive Hypertension in the Dahl Rat

    Get PDF
    Angiotensin-converting enzyme 2 (ACE 2) in the heart including its sex dependency in the hypertensive heart, has not been much studied compared to ACE. In the present study, we used the Dahl salt-sensitive rat exposed to fructose and salt to model a hypertensive phenotype in males, females, and ovariectomized females. Blood pressure was measured by the tale-cuff technique in the conscious state. Expression of RAS-related genes ACE, ACE2, angiotensin II receptor type 1, Mas1, and CMA1 in the heart were quantified. The results revealed small but significant differences between male and female groups. The main results indicate the presence of a male preponderance for an increase in ACE and ACE2 gene expression. The results are in accordance with the role of androgens or male chromosomal complement in controlling the expression of the two ACE genes

    Positive Mass Theorem for Black Holes in Einstein-Maxwell Axion-dilaton Gravity

    Full text link
    We presented the proof of the positive mass theorem for black holes in Einstein-Maxwell axion-dilaton gravity being the low-energy limit of the heterotic string theory. We show that the total mass of a spacetime containing a black hole is greater or equal to the square root of the sum of squares of the adequate dilaton-electric and dilaton-axion charges.Comment: latex file, to appear in Classical Quantum Gravit

    On certain quasi-local spin-angular momentum expressions for small spheres

    Full text link
    The Ludvigsen-Vickers and two recently suggested quasi-local spin-angular momentum expressions, based on holomorphic and anti-holomorphic spinor fields, are calculated for small spheres of radius rr about a point oo. It is shown that, apart from the sign in the case of anti-holomorphic spinors in non-vacuum, the leading terms of all these expressions coincide. In non-vacuum spacetimes this common leading term is of order r4r^4, and it is the product of the contraction of the energy-momentum tensor and an average of the approximate boost-rotation Killing vector that vanishes at oo and of the 3-volume of the ball of radius rr. In vacuum spacetimes the leading term is of order r6r^6, and the factor of proportionality is the contraction of the Bel-Robinson tensor and an other average of the same approximate boost-rotation Killing vector.Comment: 16 pages, Plain Te

    Quasi-Local Gravitational Energy

    Full text link
    A dynamically preferred quasi-local definition of gravitational energy is given in terms of the Hamiltonian of a `2+2' formulation of general relativity. The energy is well-defined for any compact orientable spatial 2-surface, and depends on the fundamental forms only. The energy is zero for any surface in flat spacetime, and reduces to the Hawking mass in the absence of shear and twist. For asymptotically flat spacetimes, the energy tends to the Bondi mass at null infinity and the \ADM mass at spatial infinity, taking the limit along a foliation parametrised by area radius. The energy is calculated for the Schwarzschild, Reissner-Nordstr\"om and Robertson-Walker solutions, and for plane waves and colliding plane waves. Energy inequalities are discussed, and for static black holes the irreducible mass is obtained on the horizon. Criteria for an adequate definition of quasi-local energy are discussed.Comment: 16 page

    On the Penrose Inequality for general horizons

    Get PDF
    For asymptotically flat initial data of Einstein's equations satisfying an energy condition, we show that the Penrose inequality holds between the ADM mass and the area of an outermost apparent horizon, if the data are restricted suitably. We prove this by generalizing Geroch's proof of monotonicity of the Hawking mass under a smooth inverse mean curvature flow, for data with non-negative Ricci scalar. Unlike Geroch we need not confine ourselves to minimal surfaces as horizons. Modulo smoothness issues we also show that our restrictions on the data can locally be fulfilled by a suitable choice of the initial surface in a given spacetime.Comment: 4 pages, revtex, no figures. Some comments added. No essential changes. To be published in Phys. Rev. Let

    Two dimensional Sen connections in general relativity

    Full text link
    The two dimensional version of the Sen connection for spinors and tensors on spacelike 2-surfaces is constructed. A complex metric γAB\gamma_{AB} on the spin spaces is found which characterizes both the algebraic and extrinsic geometrical properties of the 2-surface $\$ . The curvature of the two dimensional Sen operator Δe\Delta_e is the pull back to $\$ of the anti-self-dual part of the spacetime curvature while its `torsion' is a boost gauge invariant expression of the extrinsic curvatures of $\$ . The difference of the 2 dimensional Sen and the induced spin connections is the anti-self-dual part of the `torsion'. The irreducible parts of Δe\Delta_e are shown to be the familiar 2-surface twistor and the Weyl--Sen--Witten operators. Two Sen--Witten type identities are derived, the first is an identity between the 2 dimensional twistor and the Weyl--Sen--Witten operators and the integrand of Penrose's charge integral, while the second contains the `torsion' as well. For spinor fields satisfying the 2-surface twistor equation the first reduces to Tod's formula for the kinematical twistor.Comment: 14 pages, Plain Tex, no report numbe

    A Mass Bound for Spherically Symmetric Black Hole Spacetimes

    Get PDF
    Requiring that the matter fields are subject to the dominant energy condition, we establish the lower bound (4π)−1ÎșA(4\pi)^{-1} \kappa {\cal A} for the total mass MM of a static, spherically symmetric black hole spacetime. (A{\cal A} and Îș\kappa denote the area and the surface gravity of the horizon, respectively.) Together with the fact that the Komar integral provides a simple relation between M−(4π)−1ÎșAM - (4\pi)^{-1} \kappa A and the strong energy condition, this enables us to prove that the Schwarzschild metric represents the only static, spherically symmetric black hole solution of a selfgravitating matter model satisfying the dominant, but violating the strong energy condition for the timelike Killing field KK at every point, that is, R(K,K)≀0R(K,K) \leq 0. Applying this result to scalar fields, we recover the fact that the only black hole configuration of the spherically symmetric Einstein-Higgs model with arbitrary non-negative potential is the Schwarzschild spacetime with constant Higgs field. In the presence of electromagnetic fields, we also derive a stronger bound for the total mass, involving the electromagnetic potentials and charges. Again, this estimate provides a simple tool to prove a ``no-hair'' theorem for matter fields violating the strong energy condition.Comment: 16 pages, LATEX, no figure
    • 

    corecore