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Abstract

Using the continuity of the scalar 	2 (the mass aspect) at null in�nity through

io we show that the space of radiative solutions of general relativity can be

thought of a �bered space where the value of 	2 at io plays the role of the

base space. We also show that the restriction of the available symplectic form

to each \�ber" is degenerate. By �nding the orbit manifold of this degenerate

direction we obtain the reduced phase space for the radiation data. This

reduced phase space posses a global structure, i.e., it does not distinguishes
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between future or past null in�nity. Thus, it can be used as the space of

quantum gravitons. Moreover, a Hilbert space can be constructed on each

\�ber" if an appropriate de�nition of scalar product is provided. Since there

is no natural correspondence between the Hilbert spaces of di�erent foliations

they de�ne superselection sectors on the space of asymptotic quantum states.

We discuss the physical relevance of the superselection sectors and show

that the analogous construction for linearized gravity yields completely dif-

ferent results, thus emphasizing the need to use the full nonlinearity of the

theory even when discussing asymptotic quantization.
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I. INTRODUCTION

The Null Surface Formalism (NSF) shows that General Relativity can be viewed as a

theory of hypersurfaces on a 4-dim manifold rather than a �eld theory for a metric with

lorentzian signature. At a kinematic level NSF shows that if two (complex) conditions are

imposed on these surfaces they become null hypersurfaces of a given metric. Field equations

equivalent to the vacuum Einstein equations determine the dynamics of these characteristic

hypersurfaces [1].

Within this formalism it is also possible to distinguish radiative solutions of the vacuum

equations. It can be shown that the Bondi free data at I enters as a source term in the NSF

�eld equations for null surfaces that are asymptotic planes at null in�nity. Thus, for each

Bondi data, the regular solutions to the �eld equations represent global null surfaces of an

asymptotically 
at, vacuum metric [1].

Recently, a paper extending the NSF to the quantum level was presented [2]. The starting

point in that work is the (classical) �eld equation that yields global null surfaces, i.e. null

surfaces associated with radiative solutions. Adopting Ashtekar's asymptotic quantization

procedure [3], the Bondi free data of the NSF equations is promoted to a quantum operator

that obeys commutation relations at null in�nity. It then follows from the �eld equations that

the null surfaces themselves become operators that obey non-trivial commutation relations

[2]. Furthermore, since it is possible to identify points of the space-time as intersections of

null surfaces, it can also be shown that the space-time points themselves become quantum

operators.

There are however, technical di�culties in trying to construct a physically relevant

Hilbert and associated Fock space of incoming or outgoing gravitons where these opera-

tors could act. As shown by Ashtekar, it is possible to de�ne a Hilbert space at null in�nity

but doing so imposes severe restrictions on the free data of the associated phase space since

one leaves out almost all physically relevant spaces [3].
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In this paper we analyse again the phase space of asymptotic states. We show that,

using an exact conservation law, it is possible to foliate this space in sectors that admit non-

trivial scattering at a classical level. Furthermore, we also show that the restriction of the

symplectic form to each foliation is degenerate and that a Hilbert space can be constructed

in each sector if one factors out the degenerate direction.

In Section II we �rst review some results obtained in the context of asymptotically 
at

space-times and present a theorem that is very important for the main result of this work.

In Section III we de�ne the phase space of radiative modes and introduce the notion of

global structures on this space. We show that

1. the induced symplectic form on I, and

2. a foliation on the phase space adopting the value of  2 at io as the \base" space

are global structures.

In Section IV we show that the restricted symplectic form to each foliation is degenerate.

We study the degeneracy direction and obtain the orbit space associated with this direction.

We introduce a complex structure on the tangent space to each �bre and construct, via the

symplectic form, a global, positive de�nite inner product.

Finally, in Section V we review the main results of this work, and discuss possible gener-

alizations. The application of this formalism to the Maxwell �eld is given in the appendix.

II. RADIATIVE SPACETIMES

We de�ne a radiative spacetimeM to be a solution of the empty Einstein equations which

is asymptotically 
at at both future and past null-in�nity and suitably regular at spacelike

and time-like in�nity. We also require that it contains no horizons and is topologically

trivial in the sense that there exists a global coordinate system. This condition eliminates,

for example, the Schwarzschild solution.
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A word of caution is appropriate here: At the present moment no explicit solution of

Einstein's equations satisfying these conditions has been found, and even the existence of

such solutions has yet to be rigourously demonstrated. However, recent results, namely the

Null Surface Formalism, though not in its �nal form, does indicate that radiative spacetimes

do exist and that they can actually be constructed from a single function, �, which can be

taken to be the asymptotic shear on future null-in�nity I+ (or I�). By taking � to be

the asymptotic shear on I+ with a Bondi scaling, this construction determines a radiative

solution unique up to di�eomorphisms which preserve the structure at null-in�nity.

Another di�culty concerns the regularity conditions at space-like in�nity imposed in [6].

Although it would appear that these conditions are too restrictive for any physical spacetime

to be included in this class, it has been shown by M. Herberthson [7] that the conditions

can be relaxed and still allow su�cient regularity for the results of [6] to be valid. This class

includes all known asymptotically 
at spacetimes.

The physical interpretation of a radiative spacetime is that of a classical scattering event

involving pure gravitational radiation, the in-state being de�ned by �� on I� and the

corresponding out-state by �+ on I+.

Asymptotic 
atness at null and space-like in�nity implies the existence of an extended

conformally related space containing a null cone representing points at in�nity. Its vertex

io represents space-like in�nity and its future and past parts, I+ and I�, past and future

null in�nity. Except for 
at spacetime, the point io is not smoothly attached but has a

direction dependent structure. This, however, allows the introduction of a stereographic

coordinate function � on I = I+ [ I� which is constant along the null generators of I

and continuous through io. This function e�ectively provides a one-to-one correspondence

between the generators of I+ and I�.

In terms of this type of scaling, I+ is diverging and I� is converging. A Bondi scaling, on

the other hand, makes I+ and I� divergence free and thus io becomes an in�nitely removed

point. Given a stereographic coordinate function � on I we introduce a particular Bondi
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conformal factor 
 such that any space-like slice of I has an induced metric of the form

ds2 =
d�d��

P 2

where 2P = 1 + � ��. This is possible because all space-like slices are isometric by virtue of

the divergence-free condition. On I the vector na = �ra
 is null, non-zero, and points

along the generators. On I+ it is future pointing and on I� it is past pointing.

We now introduce a Bondi parameter function u on I satisfying narau = 1 which

determines u up to

u! u+ 


where 
 is constant along the generators. Since I consists of two disconnected components,


 = (
+; 
�) where 
� are the restrictions of 
 to I�. These two functions may be chosen

independently. Note that on both I+ and I� u = �1 represents space-like in�nity. We

now have a global coordinate system (u; �; ��) which labels points on both I+ and I�.

Given a Bondi parameter u, we complete na to form a null-tetrad (na; ma; �ma; la) on I

by demanding that ma is tangent the u = constant slices. This determines la uniquely on I

(it points out of I and is future-pointing on I+ and past-pointing on I�) but ma only up to

ma ! ei�ma:

A tetrad dependent function � on I which transforms according to

� ! eis��

is said to have spin-weight s. Though not strictly necessary, it is convenient to �x ma by

demanding mara
�� = 0.

Two important tetrad dependent functions on I are the shear � and the mass aspect  2

which are de�ned by

�(u; �; ��) = mambralb (1)

 2(u; �; ��) = 
�1Cabcdn
a �mblcmd; (2)
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Note that � and  2 have spin-weights 2 and 0 respectively. We demand smoothness in u

and regularity in the angular coordinates (�; ��) in the sense that � and  2 are expandable

in terms of the appropriate spin-weighted spherical harmonics. We also demand that the

limits limu!�1 � and limu!�1  2 exist. Since I consists of two disconnected components,

we have � = (�+; ��) where �� are the restrictions of � to I�, and similarly for  2.

By regularity at time-like in�nity we mean

lim
u!1

 2 = 0 ( lim
u!1

 �2 = 0) (3)

By an extension of the positive mass theorem [19] this implies that the initial data on an

asymptotically null, space-like hypersurface, which intersects I at u = constant, becomes


at for u!1. Since we do not have 
atness at space-like in�nity

lim
u!�1

 2 6= 0 ( lim
u!�1

 �2 6= 0): (4)

However, the results of [6] imply

lim
u!�1

 +

2 = lim
u!�1

 �2 = �(�; ��): (5)

This equation is important since it provides a link between I+ and I�.

On I we have the spin-coe�cient relations [17]:

_ 2 = �g2 _�� � ���� (6)

and

 2 � � 2 = �� _� + �g2� � c:c (7)

Using eqs (7) and (3) we have

lim
u!1

(�g2� � g
2��) = 0

which implies the existence of a Bondi frame (frames) such that

lim
u!1

� = 0 ( lim
u!1

�� = 0) (8)
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Using equations (6), (8) and (5) we now have

� = �g2��o +

Z 1

�1

_�� _��
�
du (9)

where ��o = limu!�1 ��. This provides a very important relation between in-states de-

scribed by �� and out-states described by �+. Classical scattering sends in-states to out-

states associated with the same function �. We exploit this feature in the next section to

foliate the reduced phase space of radiative solutions.

Given a real function �(�; ��) equation (9) gives

�� = ��� + P�
� (10)

where

��� =

Z
�g2��o dS (11)

and

P�
� =

Z
I�
� _� _��dI: (12)

Here dS is the area element on the u = constant slices and dI = dSdu. P�
� is the total 
ux

of super momentum through I�. If � satis�es

g
2� = 0 (13)

P�
� reduces to the total 
ux of Bondi momentum (in the direction de�ned by �) through I�

and, by integrating by parts, (10) gives the asymptotic conservation law

P+
� = P�

� : (14)

It is interesting to consider the outline of another proof of this conservation law which

brings out the necessity of condition (13) in a more geometrical way. By using a variation

of the Ludvigsen-Vicker's proof of the positivity of Bondi mass [19], it can be shown that
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there exists a spinor �eld �A in the interior of a radiative spacetime which induces a super-

translation � on I and an exact 3-form j� in the interior such that

P�
� =

Z
I�
j�:

This does not lead directly to a conservation law P+
� = P�

� since j� is in general singular at

io. However, in the special case where � is a translation in that it satis�es (13), j� becomes

su�ciently regular at io for Stokes' theorem to hold and this leads to the conservation law

P+
� = P�

� for the total 
ux of Bondi momentum. The only way to obtain a conservation law

for super momentum is to assume j� = 0 at io but this is true only for 
at space. Neverthe-

less, an interesting result for super momentum can be obtained for �rst-order perturbations

of a radiative spacetime. In this case a perturbation can be chosen which does not a�ect

space-like in�nity in the sense that �� = 0. This gives �j� = 0 at io and a direct application

of Stokes' theorem gives the perturbative conservation law for super momentum:

�P+
� = �P�

� : (15)

Combining this with equation (10) we obtain the following important result:

Lemma: Given a perturbation such that �� = 0 and ���o = 0, then the same perturbation

when propagated to I+ gives ��+o = 0.

III. PHASE SPACE OF RADIATIVE STATES

We de�ne the non-reduced phase space of radiative states to be the set � of all pairs

� = (�+; ��) where �+ and �� are shear functions `joined' by some radiative spacetime in

the sense of the previous section. The reduced phase space can be obtained by factoring

out the physically irrelevant structure provided by the choice of the coordinate functions u

and �. This gives a space where each point corresponds to a radiative spacetime unique up

to di�eomorphisms. Since � transforms quite simply under a change of Bondi frame, such
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a reduction can easily be obtained, but for the sake of simplicity we shall content ourselves

with the non-reduced phase space �.

The Bondi shears �� and �+ determine an in-state and out-state respectively. By con-

struction they satisfy

lim
u!1

�� = 0;

together with the smoothness and regularity properties stated in the previous section. A

given in-state �� determines a corresponding out-state �+ up to a BMS translation. Apart

from this, all we know about the relation between �� and �+ is that given by equation (9).

This provides a geometrically determined foliation on � where two points lie in the same

leaf if they determine the same function �(�; ��). We thus have as many equivalence classes

on � as there are regular complex functions on S2.

A natural question to ask is whether �� may be chosen freely subject to the conditions

already stated. The Null Surface Formalism shows that this is actually the case: given any

function ��(u; �; ��) satisfying these conditions, a radiative spacetime can, in principle, be

constructed together with a Bondi frame (u; �; ��) such that ��(u; �; ��) is its past shear.

By time-reversal symmetry, we see that (�+; ��) 2 � implies that (��; �+) 2 �. A

geometrical structure on � which does not depend on a preference between �+ and �� will be

said to be global. Global structures are particularly important as regards full quantization as

apposed to asymptotic quantization. The foliation de�ned by the function � is, for example,

a global structure in this sense. The subspace of � de�ned by

lim
u!�1

�� = ��o = 0

is not, however, a global structure since this condition does not imply

lim
u!�1

�+ = �+o = 0:

To obtain another type of global structure, namely a symplectic form, we must consider

the space T�(�) of tangent vectors a some point � 2 �. A tangent vector at � (corresponding

10



to a spacetime M) may be viewed as a perturbation �� = (��+; ���) where � + ��+ and

�+��� are joined by a perturbed spaceM+�M . Starting from the standard symplectic form

de�ned on a Cauchy surface and using a conserved current in the interior of the spacetime

M it is possible to show that [8]


(��1; ��2) =

Z
I�

d3I [���1 � _��
�

2 � � _��
�

1 ��
�
2 ] + c:c:

=

Z
I+
d3I [��+1 � _��

+

2 � � _��
+

1 ��
+

2 ] + c:c:; (16)

This de�nes a global, non-degenerate, symplectic form on �.

Our phase space � is thus a foliated, symplectic space. The symplectic form and foliation

are preserved under reduction, where a point in the reduced space is now an equivalence

class �̂ of related �'s and the foliation is determined by an equivalence class �̂ of related �'s.

IV. TANGENT VECTOR SPACES

We shall now restrict attention to tangent vectors �� such that

lim
u!�1

��� = 0: (17)

We emphasise that this is not a global geometric condition since it does not imply

lim
u!�1

��+ = 0: (18)

but it is necessary for the construction of a hilbert space, which is normally the �rst step

towards quantization. Our basic idea is to �nd a subspace of T�(�) (subject to this condition)

which is global in that both (17) and (18) are satis�ed, and which admits a natural hilbert-

space structure.

Let us �rst see how a natural, but non-global, hilbert-space structure can be de�ned on

T�(�) when subject to condition (17). By construction we have limu!1 ��� = 0 and thus

��� tends to zero at both ends of I�. This means that ��� admits a Fourier decomposition

with respect to u and, by means of this, we can �nd the positive and negative frequency

11



parts, ���pos and ��
�
neg, of ��

�. The complex structure J corresponding to this decomposition

is de�ned by

J�� = ((J��)+; (J��)�) (19)

where

(J��)� = i(���pos � ���neg) (20)

With respect to this complex structure, multiplication by a complex number z = x + iy is

de�ned by

z�� = x�� + yJ��:

It can easily be seen that J is compatible with 
 in that


(J��1; J��2) = 
(��1; ��2)

and positive in that


(��; J��) > 0

for non-trivial ��. From these results we see that

h��1; ��2i = 
(��1; J��2) + i
(��1; ��2) (21)

is a positive-de�nite, non-degenerate hermitian product, i.e.,

h��1; ��2i = h��2; ��1i (22)

h��; z1��1 + z2��2i = z1h��; ��1i+ z2h��; ��2i (23)

h��; ��i > 0 if ��̂ 6= 0 (24)

The tangent space T�(�) thus has a natural hilbert space structure. This structure is

also preserved under coordinate reduction but, as we have already pointed out, it is not

global in that it is de�ned with respect to I�.

It is interesting to note at this point that T�(�) possesses an even more natural complex

structure de�ned simply by J = i. This is a rather curious fact because the basic elements we
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are dealing with are radiative spacetimes which are essentially real objects, and yet we end

up with a complex vector space, in fact a complex vector space with two complex structures.

By the �nal result in section (II) we see that the subspace H of T�(�) consisting of

vectors which satisfy �� = 0, and which therefore lie in the leaf containing �, is global in

that ���o = 0 implies ��+o = 0. From equation (9) we see that an element �� of T�(�) is

contained in H i�

�(��) �

Z 1

�1

(����� + �����)du = 0: (25)

The space H contains, in turn, a preferred subspace K consisting of vectors ��k such that

���k = � _�� where � is real and _� = 0. Using (16) it can easily be checked that condition

(25) is equivalent to

H = f�� : 
(��; ��k) = 0; 8 ��k 2 Kg: (26)

This de�nes H in terms of K, thus showing that K is global in spite of the fact that it is

de�ned with respect to I�, and also shows that K contains all directions of degeneracy of


 when restricted to H. [A vector ��k is a direction of degeneracy of 
 restricted to H if


(��; ��k) = 0 for all �� 2 H.]

In order to obtain a space with a non-degenerate symplectic product we factor out the

directions of degeneracy and consider the space Ĥ of equivalence classes where �� and ��0

belong to the same equivalence class ��̂ if �� � ��0 2 K.

The symplectic product de�ned by


̂(��̂1; ��̂2) = 
(��1; ��2)

is non-degenerate on Ĥ.

To understand the physical meaning of this reduced phase space we study the integral

lines of ��k, which are obtained by introducing a parameter s and solving

d�k

ds
= �

d�

du
; (27)
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whose solution is given by

�s(u; �; ��) = �(u+ �s; �; ��): (28)

Thus, for each value of (�; ��) we have to factor out Bondi data that are supertranslations

of a given function �(u; �; ��) by an arbitrary distance along the timelike direction u.

The manifold of orbits of ��k is the reduced phase space �̂ and Ĥ its associated tangent

space.

The complex structure J does not induce a complex structure on H since �� 2 H does

not imply J�� 2 H, or, equivalently, �(��) = 0 does not imply �(J��) = 0. In particular,

we have

�(J��o) 6= 0 (29)

for all non-trivial ��o 2 K. Fortunately, we are not so much interested in H as its re-

duced version Ĥ consisting of equivalence classes of H. Using (29), we see that each such

equivalence ��̂ class contains a unique representative ��0 such that �(J��0) = 0 and hence

J��0 2 H. Since the space of all such vectors is clearly equivalent to Ĥ we see that J induces

a complex structure Ĵ on Ĥ. It is easily checked that Ĵ is compatible with 
̂ and positive.

It thus induces a hibert space structure on Ĥ.

The observant reader will have noticed that a similar construction based on I+ rather

than I� leads to another compatible, positive, complex structure Ĵ 0 on (Ĥ; 
̂). However,

since Ĥ and 
̂ are globally de�ned in the sense that their de�nition is independent of the

choice between I+ and I�, it seems reasonable to conjecture that Ĵ = Ĵ 0. Whether or not

this is true, we have at least shown the existence of a compatible, positive, complex structure

on (Ĥ; 
̂).

V. SUMMARY AND CONCLUSIONS

We have shown that the phase space of the radiative degrees of freedom of General

Relativity can be foliated using the continuity of the mass aspect ( 2) through io. It was
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also shown that this foliation is a well de�ned global structure at I

We have then shown that the induced symplectic form on each foliation is degenerate

along a direction that represents a translation of the free data � along each generator of

I. By factoring out this degenerate direction one obtains the restricted phase-space �̂

associated with each foliation that also has a global meaning

Introducing a complex structrure J one then de�nes an inner product on Ĥ that has a

�nite norm. This 1-graviton Hilbert space so constructed is the building block for the Fock

space associated with each foliation. Since there is no natural relation between Fock spaces

for di�erent \�bres" this quantization procedure de�nes superselection sectors on the full

phase space.

As we will show in the appendix, if we repeat the same construction for free Maxwell

�elds in 
at space-time one can also �nd foliations associated with the continuity of a

Maxwell scalar (�1) through io. However, the induced symplectic form on each foliation is

now non-degenerate and thus, the procedure to construct a Hilbert space follows a di�erent

approach.

The di�erences between the Maxwell case and General Relativity has profound impli-

cations. If we had linearized the gravitational �eld equations to construct the asymptotic

phase space we would have followed a similar approach to the Maxwell case and we would

have missed the fact that the induced symplectic form on each foliation for full gravity is

degenerate. The lesson being learned here is that the superselection sectors for linearized

gravity are manifestly di�erent from the ones that arise in the full theory.

At this time one could ask two questions:

1. Is this superselection rule physically signi�cant?

2. Does the quantum S-matrix preserve the superselection sectors?

In Maxwell theory each superselection sector is associated with quantization of the ra-

diation �eld in the presence of a classical distribution of electromagnetic charges. This
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meaning extends to QED if we replace the classical distribution of charges with the density

distribution of the Dirac �eld.

Likewise, in GR we associate superselection sectors with quantization of the 
uctuations

of a classical distribution of mass. It is not clear if a full quantum theory of gravity will

admit superselection sectors, though the mass operator should be a conserved quantity.

Although a quantum theory is needed to construct the S-matrix and thus answer the

second question, the answer is positive at a classical level since we have shown that these

foliations are global structures. Thus, classical scattering preserves each foliation and the

pushforward map sends tangent vectors to a foliation at I� to tangent vectors to the corre-

sponding foliation at I+. If the quantum S-matrix takes a vector belonging to a particular

foliation at I� and produces a vector that is not tangent to the same foliation at I+ then

the S-matrix will fail to be unitary since in general a vector at I+ that is not tangent to the

foliation will not have a �nite norm. To make more assertive claims however, one needs the

full quantum dynamical evolution.

The idea for future work is to use this kinematic quantization with the quantum NSF.

As mentioned in the introduction, this quantization is done at the operator level and we

are here introducing the appropriate Fock space where these operators act. The null cone

quantization then gives the dynamical evolution of these operators and, by properly taking

limits, one can construct the S-matrix of the theory.
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APPENDIX A: SUPERSELECTION SECTORS IN MAXWELL THEORY

In this appendix we use the continuity of the scalar �1 through io to foliate the solution

space of radiative solutions to the source free Maxwell's equations in Minkowski space. We

show that the restricted symplectic form to each foliation is non-degenerate and that it

yields a �nite norm.

Since we work in the null tetrad formalism, instead of the Maxwell �eld Fab we use the

(complex) scalars

�0 = Fabl
amb

�1 =
1

2
Fab(l

anb + �mamb)

�2 = Fab �m
anb;

where (la; ma; �ma; na) is a null tetrad adapted to the geometry of compacti�ed Minkowski

space with null boundary I.

Assuming the source free Maxwell �eld has �nite energy one can show that the restriction

of the scalar �1 to I satis�es

lim
x!i+

�1(x) = 0; x 2 I+

lim
x!i�

�1(x) = 0; x 2 I�: (A.1)

Furthermore, a linearization of the approach presented in [6] shows that �1 is continuous

through io, i.e.:

lim
x!io

�1(x) = lim
x0!io

�1(x
0); x 2 I� x0 2 I+ (A.2)

The idea is to use this continuity to foliate the solution space of radiative solutions.

Since we are following a similar approach to the gravitational case we will be interested

in global structures. We construct the phase space A for Maxwell theory using the two

degrees of freedom of the restricted maxwell potential Aa to I. It can be shown that the

complex function
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A� � lim
x!I�

Aam
a (A.3)

(with Aa a potential in the gauge Aan
a = 0 at I�) captures the two degrees of freedom of

the radiative solutions. As before, for simplicity we work on I� and we drop the superscript

on the scalars.

We de�ne then the non-reduced phase space of radiation �elds to be the set A of all pairs

A = (A+; A�) where A+ and A� are \joined" by a radiative solution of Maxwell's equations.

Using the relationship between the �eld and potential one can show that

�1jI = g �A:

Furthermore, since the kernel of the g operator acting on s.w. 1 functions vanishes, there is

a one to one correspondence between �1 and A and thus, it follows from (A.2) that

lim
x!io

A(x) = lim
x0!io

A(x0) = �(�; ��); x; x0 2 I� (A.4)

As before, we have as many equivalence classes on A as there are regular complex func-

tions on S2. This equivalence relation introduces a foliation on A. All A's belonging to a

foliation are labelled by the function �(�; ��).

We denote by TA(A) the tangent space at a point A and by �A = (�A+; �A�) a tangent

vector on this space. It can be easily shown that from (A.4) and the linearity of Maxwell's

equations, any tangent vector �A is global. However, since our goal is to construct a Hilbert

space on TA(A), we will only consider vectors such that �� = 0 (only these vectors admit

a Fourier decomposition along the u direction). On those vectors �Â we introduce the

following complex structure

J�Â = ((J�Â)+; (J�Â)�) (A.5)

where

(J�Â)� = i(�Â�
pos � �Â�

neg) (A.6)
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We recall that the symplectic form de�ned in the canonical formalism induces a global,

non-degenerate form on I given by.


(�A1; �A2) =

Z
d3I [�A1 � _�A2 � � _A1 � �A2] + c:c; (A.7)

where �A1 and �A2 are tangent vectors in the phase space. The idea now is to restrict the

(weakly) non-degenerate symplectic form to each foliation, i.e., we evaluate (A.7) on vectors

�Â. It follows from (A.4) that these vectors satisfy

lim
x!io

�Â(x) = 0: (A.8)

We want to show that this restricted form is non-degenerate. Assume there exists a �Âo

that satis�es (A.8) and


(�Âo; Â) = 0 (A.9)

for all �Â's that belong to TA;�(Â). Integrating by parts this equation it then follows that

�
_̂
Ao = 0; (A.10)

or

�Âo = f(�; ��); (A.11)

which contradicts (A.8).

As before J is compatible with 



(J�A1; J�A2) = 
(�A1; �A2)

and is positive for non-trivial ��. We thus de�ne the following positive-de�nite, non-

degenerate hermitian product

h�A1; �A2i = 
(�A1; J�A2) + i
(�A1; �A2) (A.12)

It is worth mentioning that vectors �A's that are not tangent to a foliation, i.e., that

do not satisfy (A.8) will have in�nite norm and thus will not belong to the Hilbert space

associated with A. These states belong to the infrared sector and are fully discussed in [3].
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On the other hand, all vectors �Â tangent to the foliations have �nite norm and one thus

de�nes a Hilbert space for each foliation. Since there is no natural connection between the

di�erent Hilbert spaces so constructed we call them superselection sectors.

What is the physical meaning of the superselection sectors?

We �rst observe that �1 yields the charge aspect of Maxwell �elds. If we allow for the

presence of bounded sources then each superselection sector yields the quantized radiation

�elds associated with a particular charge con�guration. This relationship can be extended

to full QED by constructing a �bre bundle where a point on the base space corresponds to

a Dirac state and the �bre above this point is the corresponding superselection sector.
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