1,246 research outputs found

    Spin motive forces and current fluctuations due to Brownian motion of domain walls

    Full text link
    We compute the power spectrum of the noise in the current due to spin motive forces by a fluctuating domain wall. We find that the power spectrum of the noise in the current is colored, and depends on the Gilbert damping, the spin transfer torque parameter β\beta, and the domain-wall pinning potential and magnetic anisotropy. We also determine the average current induced by the thermally-assisted motion of a domain wall that is driven by an external magnetic field. Our results suggest that measuring the power spectrum of the noise in the current in the presence of a domain wall may provide a new method for characterizing the current-to-domain-wall coupling in the system.Comment: Submitted to "Special issue: Caloritronics" in Solid State Communication

    Spin-transfer mechanism for magnon-drag thermopower

    Full text link
    We point out a relation between the dissipative spin-transfer-torque parameter β\beta and the contribution of magnon drag to the thermoelectric power in conducting ferromagnets. Using this result we estimate β\beta in iron at low temperatures, where magnon drag is believed to be the dominant contribution to the thermopower. Our results may be used to determine β\beta from magnon-drag-thermopower experiments, or, conversely, to infer the strength of magnon drag via experiments on spin transfer

    Non-resonant background suppression in preresonance CARS spectra of flavin adenine dinucleotide: Demonstration of a background suppression technique using phase mismatching and comparison with the polarization-sensitive CARS technique

    Get PDF
    Polarization-sensitive CARS spectra of a 5.7 × 10-3 mol dm-3 flavin adenine dinucleotide (FAD) solution were recorded under preresonance conditions at a pump wavelength of 532 nm. The depolarization ratios of the vibrations are shown to be close to the depolarization ratio of the non-resonant background. This results in a severe reduction of the vibration resonant signal (a factor of 700-900) in the polarization CARS spectrum, and a poor improvement in the ratio of the resonant signal and the non-resonant background (<10). \ud In this context, a non-resonant background suppression technique is discussed and demonstrated for 5.7 × 10-3 and 1.4 × 10-3 mol dm-3 FAD solutions excited at 532 nm; the non-resonant susceptibility of the walls of the cuvette, which contains the FAD solution, is used to compensate the non-resonant signal contribution of the solution. An improvement in the signal-to-noise ratio of ca. 50 is achieved at the cost of a factor of 30 in the resonant signal strength. Lorentzian-shaped spectral bands are obtained, facilitating the determination of band position, width and intensity. Line shape parameters and depolarization ratios for FAD are extracted from the presented spectra by curve fitting. The signal strength and background suppression achieved with these techniques and the resonance CARS technique (at a pump wavelength of 480 nm) are compared and discussed

    Current-driven and field-driven domain walls at nonzero temperature

    Full text link
    We present a model for the dynamics of current- and field-driven domain-wall lines at nonzero temperature. We compute thermally-averaged drift velocities from the Fokker-Planck equation that describes the nonzero-temperature dynamics of the domain wall. As special limits of this general description, we describe rigid domain walls as well as vortex domain walls. In these limits, we determine also depinning times of the domain wall from an extrinsic pinning potential. We compare our theory with previous theoretical and experimental work

    Spin motive forces due to magnetic vortices and domain walls

    Get PDF
    We study spin motive forces, i.e, spin-dependent forces, and voltages induced by time-dependent magnetization textures, for moving magnetic vortices and domain walls. First, we consider the voltage generated by a one-dimensional field-driven domain wall. Next, we perform detailed calculations on field-driven vortex domain walls. We find that the results for the voltage as a function of magnetic field differ between the one-dimensional and vortex domain wall. For the experimentally relevant case of a vortex domain wall, the dependence of voltage on field around Walker breakdown depends qualitatively on the ratio of the so-called β\beta-parameter to the Gilbert damping constant, and thus provides a way to determine this ratio experimentally. We also consider vortices on a magnetic disk in the presence of an AC magnetic field. In this case, the phase difference between field and voltage on the edge is determined by the β\beta parameter, providing another experimental method to determine this quantity.Comment: 8 pages, 9 figures, submitted to PR

    Current-induced spin torques in III-V ferromagnetic semiconductors

    Full text link
    We formulate a theory of current-induced spin torques in inhomogeneous III-V ferromagnetic semiconductors. The carrier spin-3/2 and large spin-orbit interaction, leading to spin non-conservation, introduce significant conceptual differences from spin torques in ferromagnetic metals. We determine the spin density in an electric field in the weak momentum scattering regime, demonstrating that the torque on the magnetization is intimately related to spin precession under the action of both the spin-orbit interaction and the exchange field characteristic of ferromagnetism. The spin polarization excited by the electric field is smaller than in ferromagnetic metals and, due to lack of angular momentum conservation, cannot be expressed in a simple closed vectorial form. Remarkably, scalar and spin-dependent scattering do not affect the result. We use our results to estimate the velocity of current-driven domain walls.Comment: 10 page
    • …
    corecore