79 research outputs found
Non-equilibrium conductance of a three-terminal quantum dot in the Kondo regime: Perturbative Renormalization Group
Motivated by recent experiments, we consider a single-electron transistor in
the Kondo regime which is coupled to three leads in the presence of large bias
voltages. Such a steady-state non-equilibrium system is to a large extent
governed by a decoherence rate induced by the current through the dot. As the
two-terminal conductance turns out to be rather insensitive to the decoherence
rate, we study the conductance in a three-terminal device using perturbative
renormalization group and calculate the characteristic splitting of the Kondo
resonance. The interplay between potential biases and anisotropy in coupling to
the three leads determines the decoherence rate and the conditions for strong
coupling.Comment: 4 pages, 4 figure
Enhancement of the Two-channel Kondo Effect in Single-Electron boxes
The charging of a quantum box, coupled to a lead by tunneling through a
single resonant level, is studied near the degeneracy points of the Coulomb
blockade. Combining Wilson's numerical renormalization-group method with
perturbative scaling approaches, the corresponding low-energy Hamiltonian is
solved for arbitrary temperatures, gate voltages, tunneling rates, and energies
of the impurity level. Similar to the case of a weak tunnel barrier, the shape
of the charge step is governed at low temperatures by the non-Fermi-liquid
fixed point of the two-channel Kondo effect. However, the associated Kondo
temperature TK is strongly modified. Most notably, TK is proportional to the
width of the level if the transmission through the impurity is close to unity
at the Fermi energy, and is no longer exponentially small in one over the
tunneling matrix element. Focusing on a particle-hole symmetric level, the
two-channel Kondo effect is found to be robust against the inclusion of an
on-site repulsion on the level. For a large on-site repulsion and a large
asymmetry in the tunneling rates to box and to the lead, there is a sequence of
Kondo effects: first the local magnetic moment that forms on the level
undergoes single-channel screening, followed by two-channel overscreening of
the charge fluctuations inside the box.Comment: 21 pages, 19 figure
Kondo quantum dot coupled to ferromagnetic leads: Numerical renormalization group study
We systematically study the influence of ferromagnetic leads on the Kondo
resonance in a quantum dot tuned to the local moment regime. We employ Wilson's
numerical renormalization group method, extended to handle leads with a spin
asymmetric density of states, to identify the effects of (i) a finite spin
polarization in the leads (at the Fermi-surface), (ii) a Stoner splitting in
the bands (governed by the band edges) and (iii) an arbitrary shape of the
leads density of states. For a generic lead density of states the quantum dot
favors being occupied by a particular spin-species due to exchange interaction
with ferromagnetic leads leading to a suppression and splitting of the Kondo
resonance. The application of a magnetic field can compensate this asymmetry
restoring the Kondo effect. We study both the gate-voltage dependence (for a
fixed band structure in the leads) and the spin polarization dependence (for
fixed gate voltage) of this compensation field for various types of bands.
Interestingly, we find that the full recovery of the Kondo resonance of a
quantum dot in presence of leads with an energy dependent density of states is
not only possible by an appropriately tuned external magnetic field but also
via an appropriately tuned gate voltage. For flat bands simple formulas for the
splitting of the local level as a function of the spin polarization and gate
voltage are given.Comment: 18 pages, 18 figures, accepted for publication in PR
Frustration and the Kondo effect in heavy fermion materials
The observation of a separation between the antiferromagnetic phase boundary
and the small-large Fermi surface transition in recent experiments has led to
the proposal that frustration is an important additional tuning parameter in
the Kondo lattice model of heavy fermion materials. The introduction of a Kondo
(K) and a frustration (Q) axis into the phase diagram permits us to discuss the
physics of heavy fermion materials in a broader perspective. The current
experimental situation is analysed in the context of this combined "QK" phase
diagram. We discuss various theoretical models for the frustrated Kondo
lattice, using general arguments to characterize the nature of the -electron
localization transition that occurs between the spin liquid and heavy Fermi
liquid ground-states. We concentrate in particular on the Shastry--Sutherland
Kondo lattice model, for which we establish the qualitative phase diagram using
strong coupling arguments and the large- expansion. The paper closes with
some brief remarks on promising future theoretical directions.Comment: To appear in a special issue of JLT
Conserving Diagrammatic Approximations for Quantum Impurity Models: NCA and CTMA
Self-consistent diagrammatic approximations to the Anderson or Kondo impurity
model, using an exact pseudoparticle representation of the impurity states, are
reviewed. We first discuss the infrared exponents of the pseudoparticle
propagators as indicators of Fermi liquid behavior through their dependence on
the impurity occupation and on magnetic field. Then we discuss the Non-Crossing
Approximation (NCA), identifying its strengths, but also its fundamental
shortcomings. Physical arguments as well as a perturbative renormalization
group analysis suggest that an infinite parquet-type resummation of
two-particle vertex diagrams, the Conserving T-Matrix Approximation (CTMA) will
cure the deficiencies of NCA. We review results on the pseudoparticle spectral
functions, the spin susceptibility and the impurity electron spectral function,
supporting that the CTMA provides qualitatively correct results, both in the
high-temperature regime and in the strong coupling Fermi liquid regime at low
temperatures.Comment: 10 pages, invited article, to appear in a special edition of JPSJ
"Kondo Effect - 40 Years after the Discovery", published version, some minor
typos correcte
The numerical renormalization group method for quantum impurity systems
In the beginning of the 1970's, Wilson developed the concept of a fully
non-perturbative renormalization group transformation. Applied to the Kondo
problem, this numerical renormalization group method (NRG) gave for the first
time the full crossover from the high-temperature phase of a free spin to the
low-temperature phase of a completely screened spin. The NRG has been later
generalized to a variety of quantum impurity problems. The purpose of this
review is to give a brief introduction to the NRG method including some
guidelines of how to calculate physical quantities, and to survey the
development of the NRG method and its various applications over the last 30
years. These applications include variants of the original Kondo problem such
as the non-Fermi liquid behavior in the two-channel Kondo model, dissipative
quantum systems such as the spin-boson model, and lattice systems in the
framework of the dynamical mean field theory.Comment: 55 pages, 27 figures, submitted to Rev. Mod. Phy
Manifestation of ageing in the low temperature conductance of disordered insulators
We are interested in the out of equilibrium phenomena observed in the
electrical conductance of disordered insulators at low temperature, which may
be signatures of the electron coulomb glass state. The present work is devoted
to the occurrence of ageing, a benchmark phenomenon for the glassy state. It is
the fact that the dynamical properties of a glass depend on its age, i.e. on
the time elapsed since it was quench-cooled. We first critically analyse
previous studies on disordered insulators and question their interpretation in
terms of ageing. We then present new measurements on insulating granular
aluminium thin films which demonstrate that the dynamics is indeed age
dependent. We also show that the results of different relaxation protocols are
related by a superposition principle. The implications of our findings for the
mechanism of the conductance slow relaxations are then discussed
Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states
Many-body correlations and macroscopic quantum behaviors are fascinating
condensed matter problems. A powerful test-bed for the many-body concepts and
methods is the Kondo model which entails the coupling of a quantum impurity to
a continuum of states. It is central in highly correlated systems and can be
explored with tunable nanostructures. Although Kondo physics is usually
associated with the hybridization of itinerant electrons with microscopic
magnetic moments, theory predicts that it can arise whenever degenerate quantum
states are coupled to a continuum. Here we demonstrate the previously elusive
`charge' Kondo effect in a hybrid metal-semiconductor implementation of a
single-electron transistor, with a quantum pseudospin-1/2 constituted by two
degenerate macroscopic charge states of a metallic island. In contrast to other
Kondo nanostructures, each conduction channel connecting the island to an
electrode constitutes a distinct and fully tunable Kondo channel, thereby
providing an unprecedented access to the two-channel Kondo effect and a clear
path to multi-channel Kondo physics. Using a weakly coupled probe, we reveal
the renormalization flow, as temperature is reduced, of two Kondo channels
competing to screen the charge pseudospin. This provides a direct view of how
the predicted quantum phase transition develops across the symmetric quantum
critical point. Detuning the pseudospin away from degeneracy, we demonstrate,
on a fully characterized device, quantitative agreement with the predictions
for the finite-temperature crossover from quantum criticality.Comment: Letter (5 pages, 4 figures) and Methods (10 pages, 6 figures
Non-equilibrium Kondo effect in asymmetrically coupled quantum dot
The quantum dot asymmetrically coupled to the external leads has been
analysed theoretically by means of the equation of motion (EOM) technique and
the non-crossing approximation (NCA). The system has been described by the
single impurity Anderson model. To calculate the conductance across the device
the non-equilibrium Green's function technique has been used. The obtained
results show the importance of the asymmetry of the coupling for the appearance
of the Kondo peak at nonzero voltages and qualitatively explain recent
experiments.Comment: 7 pages, 6 figures, Physical Review B (accepted for publication
Kondo effect in coupled quantum dots: a Non-crossing approximation study
The out-of-equilibrium transport properties of a double quantum dot system in
the Kondo regime are studied theoretically by means of a two-impurity Anderson
Hamiltonian with inter-impurity hopping. The Hamiltonian, formulated in
slave-boson language, is solved by means of a generalization of the
non-crossing approximation (NCA) to the present problem. We provide benchmark
calculations of the predictions of the NCA for the linear and nonlinear
transport properties of coupled quantum dots in the Kondo regime. We give a
series of predictions that can be observed experimentally in linear and
nonlinear transport measurements through coupled quantum dots. Importantly, it
is demonstrated that measurements of the differential conductance , for the appropriate values of voltages and inter-dot tunneling
couplings, can give a direct observation of the coherent superposition between
the many-body Kondo states of each dot. This coherence can be also detected in
the linear transport through the system: the curve linear conductance vs
temperature is non-monotonic, with a maximum at a temperature
characterizing quantum coherence between both Kondo states.Comment: 20 pages, 17 figure
- …