27 research outputs found

    Why EU asylum standards exceed the lowest common denominator: the role of regulatory expertise in EU decision-making

    Get PDF
    While scholars traditionally expected EU policy-making in the area of asylum to produce lowest common denominator standards, recent studies on the first phase of the Common European Asylum System have observed higher asylum standards in some instances. This article aims at explaining this divergence. Drawing on concepts of regulatory expertise and ‘misfit’, it argues that the observed variation in policy output can be explained by the dominance of a few (Northern) member states which were highly successful in inserting their positions in the core EU directives. Government effectiveness and exposure to the phenomenon entailing regulatory expertise provide a powerful explanation for member states being effective policy-shapers. Characterized by low levels of government effectiveness and exposure in the asylum area, Southern European countries were, on the contrary, rather passive during the negotiations and barely left any mark on the EU directives

    Apicobasal transferrin receptor localization and trafficking in brain capillary endothelial cells

    No full text
    Abstract The detailed mechanisms by which the transferrin receptor (TfR) and associated ligands traffic across brain capillary endothelial cells (BECs) of the CNS-protective blood–brain barrier constitute an important knowledge gap within maintenance and regulation of brain iron homeostasis. This knowledge gap also presents a major obstacle in research aiming to develop strategies for efficient receptor-mediated drug delivery to the brain. While TfR-mediated trafficking from blood to brain have been widely studied, investigation of TfR-mediated trafficking from brain to blood has been limited. In this study we investigated TfR distribution on the apical and basal plasma membranes of BECs using expansion microscopy, enabling sufficient resolution to separate the cellular plasma membranes of these morphological flat cells, and verifying both apical and basal TfR membrane domain localization. Using immunofluorescence-based transcellular transport studies, we delineated endosomal sorting of TfR endocytosed from the apical and basal membrane, respectively, as well as bi-directional TfR transcellular transport capability. The findings indicate different intracellular sorting mechanisms of TfR, depending on the apicobasal trafficking direction across the BBB, with the highest transcytosis capacity in the brain-to-blood direction. These results are of high importance for the current understanding of brain iron homeostasis. Also, the high level of TfR trafficking from the basal to apical membrane of BECs potentially explains the low transcytosis which are observed for the TfR-targeted therapeutics to the brain parenchyma

    A novel network-based approach for discovering dynamic metabolic biomarkers in cardiovascular disease.

    No full text
    Metabolic biomarkers may play an important role in the diagnosis, prognostication and assessment of response to pharmacological therapy in complex diseases. The process of discovering new metabolic biomarkers is a non-trivial task which involves a number of bioanalytical processing steps coupled with a computational approach for the search, prioritization and verification of new biomarker candidates. Kinetic analysis provides an additional dimension of complexity in time-series data, allowing for a more precise interpretation of biomarker dynamics in terms of molecular interaction and pathway modulation. A novel network-based computational strategy for the discovery of putative dynamic biomarker candidates is presented, enabling the identification and verification of unexpected metabolic signatures in complex diseases such as myocardial infarction. The novelty of the proposed method lies in combining metabolic time-series data into a superimposed graph representation, highlighting the strength of the underlying kinetic interaction of preselected analytes. Using this approach, we were able to confirm known metabolic signatures and also identify new candidates such as carnosine and glycocholic acid, and pathways that have been previously associated with cardiovascular or related diseases. This computational strategy may serve as a complementary tool for the discovery of dynamic metabolic or proteomic biomarkers in the field of clinical medicine
    corecore