731 research outputs found

    Basal cell carcinoma: A comprehensive review

    Get PDF
    Basal cell carcinoma (BCC) is the most common type of carcinoma worldwide. BCC development is the result of a complex interaction between environmental, phenotypic and genetic factors. However, despite the progress in the field, BCC biology and mechanisms of resistance against systemic treatments have been poorly investigated. The aim of the present review is to provide a revision of BCC histological and molecular features, including microRNA (miRNA) dysregulation, with a specific focus on the molecular basis of BCC systemic therapies. Papers from the last ten years regarding BCC genetic and phenotypic alterations, as well as the mechanism of resistance against hedgehog pathway inhibitors vismodegib and sonidegib were included. The involvement of miRNAs in BCC resistance to systemic therapies is emerging as a new field of knowledge

    MicroRNA-221 silencing attenuates the degenerated phenotype of intervertebral disc cells.

    Get PDF
    The aim of this study was to investigate the role of an antichondrogenic factor, MIR221 (miR‐221), in intervertebral disc degeneration (IDD), and provide basic information for the development of a therapeutic strategy for the disc repair based on specific nucleic acid based drugs, such as miR‐221 silencing. We established a relatively quick protocol to minimize artifacts from extended in vitro culture, without selecting the different types of cells from intervertebral disc (IVD) or completely disrupting extracellular matrix (ECM), but by using the whole cell population with a part of resident ECM. During the de‐differentiation process miR‐221 expression significantly increased. We demonstrated the effectiveness of miR‐221 silencing in driving the cells towards chondrogenic lineage. AntagomiR‐221 treated cells showed in fact a significant increase of expression of typical chondrogenic markers including COL2A1, ACAN and SOX9, whose loss is associated with IDD. Moreover, antagomiR‐221 treatment restored FOXO3 expression and increased TRPS1 expression levels attenuating the severity grade of degeneration, and demonstrating in a context of tissue degeneration and inflammation not investigated before, that FOXO3 is target of miR‐221. Data of present study are promising in the definition of new molecules useful as potential intradiscal injectable biological agents

    Pro‑differentiating compounds for human intervertebral disc cells are present in Violina pumpkin leaf extracts

    Get PDF
    The intervertebral disc degeneration (IDD) is closely associated with inflammation, oxidative stress and loss of the discogenic phenotype which current therapies are unable to reverse. Here, the effects of acetone extract from Violina pumpkin (Cucurbita moschata) leaves on degenerated intervertebral disc (IVD) cells was investigated. IVD cells were isolated from degenerated disc tissue of patients undergoing spinal surgery, and exposed to acetone extract and three major thin layer chromatography subfractions. We found that the cells benefit from exposure in particular to subfraction 7 consisting almost entirely of p-Coumaric acid. Subfraction 7-treated cells showed a significant increase of discogenic transcription factors (SOX9, TRPS1), extracellular matrix components (aggrecan, collagen type II), cellular homeostasis and stress response regulators (FOXO3a, Nrf2, SOD2, SIRT1). Migratory ability and the expression of OCT4, two important markers related to the presence and activity of stem cells also increased. Moreover, subfraction 7 counteractes H2O2-triggered cell damage preventing in particular the increase of the pro-inflammatory and antichondrogenic microRNA, miR-221. This strengthens the hypothesis that adequate stimuli can support resident cells to repopulate the degenerate IVD and restart the anabolic machinery. Taken together, the data we obtained contribute to the discovery of molecules potentially effective in slowing the progression of IDD, a disease for which there is currently no effective treatment. Moreover, the enhancement of a part of plant, the pumpkin leaves, considered a waste product in the Western world, demonstrating that it contains substances with potential beneficial effects on human health
    corecore