1,529 research outputs found

    Automated Data Management Information System (ADMIS)

    Get PDF
    ADMIS stores and controls data and documents associated with manned space flight effort. System contains all data oriented toward a specific document; it is primary source of reports generated by the system. Each group of records is composed of one document record, one distribution record for each recipient of the document, and one summary record

    Crossover from 2D to 3D in a weakly interacting Fermi gas

    Full text link
    We have studied the transition from two to three dimensions in a low temperature weakly interacting 6^6Li Fermi gas. Below a critical atom number, N2DN_{2D}, only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two-dimensional. Above N2DN_{2D} the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.Comment: Replaced with published manuscrip

    Self-trapping at the liquid vapor critical point

    Full text link
    Experiments suggest that localization via self-trapping plays a central role in the behavior of equilibrated low mass particles in both liquids and in supercritical fluids. In the latter case, the behavior is dominated by the liquid-vapor critical point which is difficult to probe, both experimentally and theoretically. Here, for the first time, we present the results of path-integral computations of the characteristics of a self-trapped particle at the critical point of a Lennard-Jones fluid for a positive particle-atom scattering length. We investigate the influence of the range of the particle-atom interaction on trapping properties, and the pick-off decay rate for the case where the particle is ortho-positronium.Comment: 12 pages, 3 figures, revtex4 preprin

    Effect of Level of Surface Spoilage on the Nutritive Value of Maize Silage Diets

    Get PDF
    This study determined the effect of surface spoilage in the diet on feed intake and nutrient digestibilities using growing steers fed whole-plant maize silage-based diets. A bunker silo, 0.9 m in depth, and a 2.7 m diameter AgBag were filled with alternating loads of chopped forage. After 90 days, the bunker was sealed with a sheet of polyethylene, and this silage was designated “spoiled”. The silage in the AgBag was designated “normal”. The four diets contained 90% silage and 10% supplement (dry matter basis), and the proportions of silage in the diets were A) 100% normal, B) 75% normal: 25% spoiled; C) 50% normal: 50% spoiled; and D) 25% normal: 75% spoiled. Feed intake decreased linearly as the proportion of spoiled silage increased from 0 to 75%. Steers consuming the normal silage diet had the highest nutrient digestibilities. Spoiled silage also had negative associative effects on nutrient digestibilities, and the integrity of the forage mat in the rumen was partially destroyed

    Statistical Estimation of Orbital Debris Populations with a Spectrum of Object Size

    Get PDF
    Orbital debris is a real concern for the safe operations of satellites. In general, the hazard of debris impact is a function of the size and spatial distributions of the debris populations. To describe and characterize the debris environment as reliably as possible, the current NASA Orbital Debris Engineering Model (ORDEM2000) is being upgraded to a new version based on new and better quality data. The data-driven ORDEM model covers a wide range of object sizes from 10 microns to greater than 1 meter. This paper reviews the statistical process for the estimation of the debris populations in the new ORDEM upgrade, and discusses the representation of large-size (greater than or equal to 1 m and greater than or equal to 10 cm) populations by SSN catalog objects and the validation of the statistical approach. Also, it presents results for the populations with sizes of greater than or equal to 3.3 cm, greater than or equal to 1 cm, greater than or equal to 100 micrometers, and greater than or equal to 10 micrometers. The orbital debris populations used in the new version of ORDEM are inferred from data based upon appropriate reference (or benchmark) populations instead of the binning of the multi-dimensional orbital-element space. This paper describes all of the major steps used in the population-inference procedure for each size-range. Detailed discussions on data analysis, parameter definition, the correlation between parameters and data, and uncertainty assessment are included

    Momentum distribution of liquid helium

    Full text link
    We have obtained the one--body density matrix and the momentum distribution n(p)n(p) of liquid 4^4He at T=3D0oT=3D0^oK from Diffusion Monte Carlo (DMC) simulations, using trial functions optimized via the Euler Monte Carlo (EMC) method. We find a condensate fraction smaller than in previous calculations. Though we do not explicitly include long--range correlations in our calculations, we get a momentum distribution at long wavelength which is compatible with the presence of long--range correlations in the exact wave function. We have also studied 3^3He, using fixed--node DMC, with nodes and trial functions provided by the EMC. In particular, we analyze the momentum distribution n(p)n(p) with respect to the discontinuity ZZ as well as the singular behavior, at the Fermi surface. We also show that an approximate factorization of the one-body density matrix ρ(r)ρ0(r)ρB(r)\rho(r)\simeq \rho_0(r)\rho_B(r) holds, with ρ0(r)\rho_0(r) and ρB(r)\rho_B(r) respectively the density matrix of the ideal Fermi gas and the density matrix of a Bose 3^3He.Comment: 10 pages, REVTeX, 12 figure

    Two-dimensional array of microtraps with atomic shift register on a chip

    Get PDF
    Arrays of trapped atoms are the ideal starting point for developing registers comprising large numbers of physical qubits for storing and processing quantum information. One very promising approach involves neutral atom traps produced on microfabricated devices known as atom chips, as almost arbitrary trap configurations can be realised in a robust and compact package. Until now, however, atom chip experiments have focused on small systems incorporating single or only a few individual traps. Here we report experiments on a two-dimensional array of trapped ultracold atom clouds prepared using a simple magnetic-film atom chip. We are able to load atoms into hundreds of tightly confining and optically resolved array sites. We then cool the individual atom clouds in parallel to the critical temperature required for quantum degeneracy. Atoms are shuttled across the chip surface utilising the atom chip as an atomic shift register and local manipulation of atoms is implemented using a focused laser to rapidly empty individual traps.Comment: 6 pages, 4 figure
    corecore