14,080 research outputs found

    A Method to Tackle First Order Differential Equations with Liouvillian Functions in the Solution - II

    Full text link
    We present a semi-decision procedure to tackle first order differential equations, with Liouvillian functions in the solution (LFOODEs). As in the case of the Prelle-Singer procedure, this method is based on the knowledge of the integrating factor structure.Comment: 11 pages, late

    Liquid mixtures involving fluorinated alcohols: The equation of state (p, r, T, x) of (Ethanol + Trifluoroethanol) Experimental and Simulation

    Get PDF
    Liquid mixtures involving fluorinated alcohols: The equation of state (p, r, T, x) of (Ethanol + Trifluoroethanol) Experimental and Simulation Pedro Duartea, Djêide Rodriguesa, Marcelo Silvaa, Pedro Morgadoa, Luís Martinsa,b and Eduardo J. M. Filipea* aCentro de Química Estrutural, Instituto Superior Técnico, 1049-001 Lisboa, Portugal bCentro de Química de Évora, Universidade de Évora, 7000-671 Évora, Portugal Fluorinated alcohols are substances with unique properties and high technological value in the pharmaceutical and chemical industries. Trifluoroethanol (TFE), in particular, displays a number of unusual properties as a solvent. For example, it dissolves nylon at room temperature and is effectively used as solvent in bioengineering. The presence of the three fluorines atoms gives the alcohol a high ionization constant, strong hydrogen bonding capability and stability at high temperatures. In the pharmaceutical industry, TFE finds use as the major raw material for the production of inhalation anesthetics. Mixtures of TFE and water (known as Fluorinols®) are used as working fluids for Rankine cycle heat engines for terrestrial and space applications, as a result of a unique combination of physical and thermodynamic properties such as high thermal efficiency and excellent turbine expansion characteristics. Environmentally, TFE is a CFC substitute with an acceptable short lifetime and with small ozone depletion potential. Additionally, TFE is known to induce conformational changes in proteins and it is used as a co-solvent to analyze structural features of partially folded states. The (ethanol + TFE) system displays an interesting and peculiar behaviour, combining a negative azeotrope with high positive excess volumes. In this work, liquid mixtures of (ethanol + TFE) were investigated. The densities of the mixtures were measured as a function of composition between 278K and 338K and at pressures up to 700 bar. The corresponding excess volumes as a function of temperature and pressure, the isothermal compressibilities and thermal expansivities were calculated from the experimental results. The mixtures are highly non-ideal with excess volumes ranging from 0.8 - 1.0 cm3mol-1. Finally, molecular dynamic simulations were performed to model and interpret the experimental results. The Trappe force field was used to simulate the (TFE + ethanol) mixtures and calculate the corresponding excess volumes. The simulation results are able to reproduce the correct sign and order of magnitude of the experimental VE without fitting to the experimental data. Furthermore, the simulations suggest the presence of a particular type of hydrogen bridge between ethanol and TFE, that can help to rationalize the experimental results

    A solvable model of the evolutionary loop

    Full text link
    A model for the evolution of a finite population in a rugged fitness landscape is introduced and solved. The population is trapped in an evolutionary loop, alternating periods of stasis to periods in which it performs adaptive walks. The dependence of the average rarity of the population (a quantity related to the fitness of the most adapted individual) and of the duration of stases on population size and mutation rate is calculated.Comment: 6 pages, EuroLaTeX, 1 figur

    Modeling runoff with AnnAGNPS model in a small agricultural catchment, in Mediterranean environment

    Get PDF
    Agricultural activities, as part of the natural resource management practice, impact soil and water quality at the watershed or catchment level. Field monitoring is often used to evaluate and acquire knowledge of the impacts of management practices on productivity and environment. Computer simulation models, after calibrated and validated, provide an efficient and effective alternative for evaluating the effects of agricultural practices on soil and water quality at the watershed level. The main objective is calibrate and validate the AnnAGNPS model relatively to runoff and peak flow using five hydrologic years data, for the rain and irrigation season. The study watershed is located in Portugal, and covers an area of 189 ha, divided into 18 fields belonging to four farmers. The climate is typically Mediterranean with continental influence, and the main crops are oat, tobacco, sorghum and maize. The calibration was done manually, but in a systematic away, in order to select values for the statistical parameters so that the model closely simulates runoff and peak flow. The results obtained in calibration and validation of the AnnAGNPS model, confirm a good or very good performance to simulate the peak flow and runoff volume at daily or event scale, in rainfall season. Also, the obtained results are a good indication of the validity of AnnAGNPS model to simulate runoff in irrigation to larger periods of time, for example irrigation season
    corecore