224 research outputs found

    Estimating the contribution from different ionospheric regions to the TEC response to the solar flares using data from the international GPS network

    Get PDF
    This paper proposes a new method for estimating the contribution from different ionospheric regions to the response of total electron content variations to the solar flare which uses the effect of partial shadowing of the atmosphere by the terrestrial globe. The study uses GPS stations located near the boundary of the shadow on the ground in the nightside hemisphere. The beams between the satellite-borne transmitter and the receiver on the ground for these stations pass partially through the atmosphere lying in the region of total shadow and partially through the illuminated atmosphere. The analysis of the ionospheric effect of a powerful solar flare of class X5.7/3B that was recorded on July 14, 2000 (10:24 UT, N22W07) in quiet geomagnetic conditions (Dst=-10 nT) has shown that about 20% of the TEC increase correspond to the ionospheric region lying below 100 km, about 5% refer to the ionospheric E-region (100-140 km), about 30% correspond to the F1-region (140-200 km), and about 30% to regions lying above 300 km.Comment: LaTeX, 6 pages, 4 figures, 1 tabl

    The shock-acoustic waves generated by earthquakes

    Get PDF
    We investigate the form and dynamics of shock-acoustic waves generated by earthquakes. We use the method for detecting and locating the sources of ionospheric impulsive disturbances, based on using data from a global network of receivers of the GPS navigation system and requiring no a priori information about the place and time of associated effects. The practical implementation of the method is illustrated by a case study of earthquake effects in Turkey (August 17, and November 12, 1999), in Southern Sumatera (June 4, 2000), and off the coast of Central America (January 13, 2001). It was found that in all instances the time period of the ionospheric response is 180-390 s, and the amplitude exceeds by a factor of two as a minimum the standard deviation of background fluctuations in total electron content in this range of periods under quiet and moderate geomagnetic conditions. The elevation of the wave vector varies through a range of 20-44 degree, and the phase velocity (1100-1300 m/s) approaches the sound velocity at the heights of the ionospheric F-region maximum. The calculated (by neglecting refraction corrections) location of the source roughly corresponds to the earthquake epicenter. Our data are consistent with the present views that shock-acoustic waves are caused by a piston-like movement of the Earth surface in the zone of an earthquake epicenter.Comment: EmTeX-386, 30 pages, 4 figures, 3 tabl
    • …
    corecore