487 research outputs found

    Role of electromagnetic dipole operator in the electroweak penguin dominated vector meson decays of BB meson

    Full text link
    The pure annihilation type decays Bd0ϕγB^0_d\to\phi\gamma and BsργB_s\to\rho\gamma receive only color suppressed penguin contributions with a very small branching ratio in the standard model. When we include the previously neglected electromagnetic dipole operator, the branching ratios can be enhanced one order magnitude larger than previous study using QCD factorization approach. That is BR(Bˉd0ϕγ)1×1011{\cal BR}(\bar B^0_d\to\phi\gamma)\simeq 1 \times 10^{-11} and BR(Bsργ)(616)×1010{\cal BR}(B_s\to\rho\gamma) \sim (6-16)\times 10^{-10}. The new effect can also give a large contribution, of order 10910^{-9}, to transverse polarization of BϕρB\to\phi\rho and BωϕB\to \omega\phi which is comparable to the longitudinal part. These effects can be detected in the LHCb experiment and the Super-B factories.Comment: Revised extensively. 8 pages, 4 figure

    Study of BDπB\to D^{**} \pi decays

    Full text link
    We investigate the production of the novel PP-wave mesons D0D^{*}_{0} and D1(D1)D^{\prime}_{1} (D_{1}), identified as JP=0+J^{P}=0^+ and 1+1^+, in heavy BB meson decays, respectively. With the heavy quark limit, we give our modelling wave functions for the scalar meson D0D^{*}_{0}. Based on the assumptions of color transparency and factorization theorem, we estimate the branching ratios of BD0πB\to D^{*}_{0} \pi decays in terms of the obtained wave functions. Some remarks on D1()D^{(\prime)}_{1} productions are also presented.Comment: 16 pages, 2 figures, Revtex4, to be published in Phys. Rev.

    Study of color suppressed modes B0Dˉ()0η()B^0 \to \bar D^{(*)0} \eta^{(\prime)}

    Full text link
    The color suppressed modes B0Dˉ()0η()B^0 \to \bar D^{(*)0} \eta^{(\prime)} are analyzed in perturbative QCD approach. We find that the dominant contribution is from the non-factorizable diagrams. The branching ratios calculated in our approach for B0Dˉ()0ηB^0 \to \bar D^{(*)0} \eta agree with current experiments. By neglecting the gluonic contribution, we predict the branching ratios of B0Dˉ()0ηB^0 \to \bar D^{(*)0} \eta' are at the comparable size of B0Dˉ()0π0B^0 \to \bar D^{(*)0} \pi^0, but smaller than that of B0Dˉ()0ηB^0 \to \bar D^{(*)0} \eta .Comment: revtex, 5 pages, axodraw.st

    Factorization and Endpoint Singularities in Heavy-to-Light decays

    Get PDF
    We prove a factorization theorem for heavy-to-light form factors. Our result differs in several important ways from previous proposals. A proper separation of scales gives hard kernels that are free of endpoint singularities. A general procedure is described for including soft effects usually associated with the tail of wavefunctions in hard exclusive processes. We give an operator formulation of these soft effects using the soft-collinear effective theory, and show that they appear at the same order in the power counting as the hard spectator contribution.Comment: 5 pages, Added details on comparison with the literatur

    Threshold resummation for exclusive B meson decays

    Full text link
    We argue that double logarithmic corrections αsln2x\alpha_s\ln^2 x need to be resumed in perturbative QCD factorization theorem for exclusive BB meson decays, when the end-point region with a momentum fraction x0x\to 0 is important. These double logarithms, being of the collinear origin, are absorbed into a quark jet function, which is defined by a matrix element of a quark field attached by a Wilson line. The factorization of the jet function from the decay BγlνˉB\to\gamma l\bar\nu is proved to all orders. Threshold resummation for the jet function leads to a universal, {\it i.e.}, process-independent, Sudakov factor, whose qualitative behavior is analyzed and found to smear the end-point singularities in heavy-to-light transition form factors.Comment: 10 pages, more details are include

    Appraisal of progenitor markers in the context of molecular classification of breast cancers

    Get PDF
    Clinical management of breast cancer relies on case stratification, which increasingly employs molecular markers. The motivation behind delineating breast epithelial differentiation is to better target cancer cases through innate sensitivities bequeathed to the cancer from its normal progenitor state. A combination of histopathological and molecular classification of breast cancer cases suggests a role for progenitors in particular breast cancer cases. Although a remarkable fraction of the real tissue repertoire is maintained within a population of independent cell line cultures, some steps that are closer to the terminal differentiation state and that form a majority of primary human breast tissues are missing in the cell line cultures. This raises concerns about current breast cancer models

    Analysis of Supersymmetric Effects on B -> phi K Decays in the PQCD Approach

    Full text link
    We study the effects of the MSSM contribution on B -> phi K decays using the perturbative QCD approach. In this approach, strong phases can be calculated, so that we can predict the values of CP asymmetries with the MSSM contribution. We predict a large relative strong phase between the penguin amplitude and the chromomagnetic penguin amplitude. If there is a new CP violating phase in the chromomagnetic penguin amplitude, then the CP asymmetries may change significantly from the SM prediction. We parametrize the new physics contributions that appear in the Wilson coefficients. We maximize the new physics parameters up to the point where it is limited by experimental constraints. In the case of the LR insertion, we find that the direct CP asymmetries can reach about 85% and the indirect CP asymmetry can reach about -30%.Comment: 18 pages, 9 figures, REVTeX, Minor changes, Version to appear in Phys. Rev.

    Study of Bc --> J/psi pi, etac pi decays with perturbative QCD approach

    Full text link
    The Bc --> J/psi pi, etac pi decays are studied with the perturbative QCD approach. It is found that form factors and branching ratios are sensitive to the parameters w, v, f_J/psi and f_etac, where w and v are the parameters of the charmonium wave functions for Coulomb potential and harmonic oscillator potential, respectively, f_J/psi and f_etac are the decay constants of the J/psi and etac mesons, respectively. The large branching ratios and the clear signals of the final states make the Bc --> J/psi pi, etac pi decays to be the prospective channels for measurements at the hadron collidersComment: 21 pages, revtex

    Study of K0(1430)K^*_0(1430) and a0(980)a_0(980) from BK0(1430)πB\to K^*_0(1430)\pi and Ba0(980)KB\to a_0(980)K Decays

    Full text link
    We use the decay modes BK0(1430)πB \to K^*_0(1430) \pi and Ba0(980)KB \to a_0(980) K to study the scalar mesons K0(1430)K^*_0(1430) and a0(980)a_0(980) within perturbative QCD framework. For BK0(1430)πB \to K^*_0(1430) \pi, we perform our calculation in two scenarios of the scalar meson spectrum. The results indicate that scenario II is more favored by experimental data than scenario I. The important contribution from annihilation diagrams can enhance the branching ratios about 50% in scenario I, and about 30% in scenario II. The predicted branching ratio of Ba0(980)KB \to a_0(980) K in scenario I is also less favored by the experiments. The direct CP asymmetries in BK0(1430)πB \to K^*_0(1430) \pi are small, which are consistent with the present experiments.Comment: More references are added. Published Versio
    corecore