33 research outputs found

    Focal Adhesion Kinase Suppresses Apoptosis by Binding to the Death Domain of Receptor-Interacting Protein

    Get PDF
    Tumor cells resist the apoptotic stimuli associated with invasion and metastasis by activating survival signals that suppress apoptosis. Focal adhesion kinase (FAK), a tyrosine kinase that is overexpressed in a variety of human tumors, mediates one of these survival signals. Attenuation of FAK expression in tumor cells results in apoptosis that is mediated by caspase 8- and FADD-dependent pathways, suggesting that death receptor pathways are involved in the process. Here, we report a functional link between FAK and death receptors. We have demonstrated that FAK binds to the death domain kinase receptor-interacting protein (RIP). RIP is a major component of the death receptor complex and has been shown to interact with Fas and tumor necrosis factor receptor 1 through its binding to adapter proteins. We have shown that RIP provides proapoptotic signals that are suppressed by its binding to FAK. We thus propose that FAK overexpression in human tumors provides a survival signal function by binding to RIP and inhibiting its interaction with the death receptor complex

    Combination of RGD Compound and Low-Dose Paclitaxel Induces Apoptosis in Human Glioblastoma Cells

    Get PDF
    ) peptide, to human glioblastoma U87MG cells with combination of low dose Paclitaxel (PTX) pre-treatment to augment therapeutic activity for RGD peptide-induced apoptosis. peptide induced U87MG programmed cell death. The increased expression of PTX-induced integrin-Ξ±vΞ²3 was correlated with the enhanced apoptosis in U87MG cells.This study provides a novel concept of targeting integrin-Ξ±vΞ²3 with RGD peptides in combination with low-dose PTX pre-treatment to improve efficiency in human glioblastoma treatment

    Downregulation of FIP200 Induces Apoptosis of Glioblastoma Cells and Microvascular Endothelial Cells by Enhancing Pyk2 Activity

    Get PDF
    The expression of focal adhesion kinase family interacting protein of 200-kDa (FIP200) in normal brain is limited to some neurons and glial cells. On immunohistochemical analysis of biopsies of glioblastoma tumors, we detected FIP200 in the tumor cells, tumor-associated endothelial cells, and occasional glial cells. Human glioblastoma tumor cell lines and immortalized human astrocytes cultured in complete media also expressed FIP200 as did primary human brain microvessel endothelial cells (MvEC), which proliferate in culture and resemble reactive endothelial cells. Downregulation of endogenous expression of FIP200 using small interfering RNA resulted in induction of apoptosis in the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC. It has been shown by other investigators using cells from other tissues that FIP200 can interact directly with, and inhibit, proline-rich tyrosine kinase 2 (Pyk2) and focal adhesion kinase (FAK). In the human glioblastoma tumor cells, immortalized human astrocytes, and primary human brain MvEC, we found that downregulation of FIP200 increased the activity of Pyk2 without increasing its expression, but did not affect the activity or expression of FAK. Coimmunoprecipitation and colocalization studies indicated that the endogenous FIP200 was largely associated with Pyk2, rather than FAK, in the glioblastoma tumor cells and brain MvEC. Moreover, the pro-apoptotic effect of FIP200 downregulation was inhibited significantly by a TAT-Pyk2-fusion protein containing the Pyk2 autophosphorylation site in these cells. In summary, downregulation of endogenous FIP200 protein in glioblastoma tumor cells, astrocytes, and brain MvECs promotes apoptosis, most likely due to the removal of a direct interaction of FIP200 with Pyk2 that inhibits Pyk2 activation, suggesting that FIP200 expression may be required for the survival of all three cell types found in glioblastoma tumors

    Identification of molecular mechanisms for cellular drug resistance by combining drug activity and gene expression profiles

    Get PDF
    Acquired drug resistance is a major problem in cancer treatment. To explore the genes involved in chemosensitivity and resistance, 10 human tumour cell lines, including parental cells and resistant subtypes selected for resistance against doxorubicin, melphalan, teniposide and vincristine, were profiled for mRNA expression of 7400 genes using cDNA microarray technology. The drug activity of 66 cancer agents was evaluated on the cell lines, and correlations between drug activity and gene expression were calculated and ranked. Hierarchical clustering of drugs based on their drug–gene correlations yielded clusters of drugs with similar mechanism of action. Genes correlated with drug sensitivity and resistance were imported into the PathwayAssist software to identify putative molecular pathways involved. A substantial number of both proapoptotic and antiapoptotic genes such as signal transducer and activator of transcription 1, mitogen-activated protein kinase 1 and focal adhesion kinase were found to be associated to drug resistance, whereas genes linked to cell cycle control and proliferation, such as cell division cycle 25A and signal transducer of activator of transcription 5A, were associated to general drug sensitivity. The results indicate that combined information from drug activity and gene expression in a resistance-based cell line panel may provide new knowledge of the genes involved in anticancer drug resistance and become a useful tool in drug development

    Investigation of industrial contamination of protective clothing atΒ oilΒ industry sector

    Get PDF
    The article presents the research results of the interaction of the protective clothes surface with polluting components of production facilities of the oil and oil refining industry. The development direction of an oil-resistant clothing segment is proved. The aggressive components of the production environment of the oil sector are substantiated with respect to the protective functions of special clothes. Oil and petroleum products lead to a change in the properties of textile materials. This depends on the concentration of aggressive components in the structure of textile materials. The research results of the interaction of petroleum products with a textile composition of a woven structure with protective properties are presented. Based on the study of 50 suits that have passed the operational cycle of one season, restrictions are established on the areas of the clothing surface of uneven protection. Clothing zones risk-affected loss of protective effect is established. The results of experimental studies of the concentration of petroleum products in textile materials after chemical purification based on the method of gas capillary chromatography are presented. It was found that the main component with a high concentration of pollutants is hydrocarbons from C14H30 Tetradecane to C36H74 Hexatriacontane. The average values of the concentration of hydrocarbons on the purified samples for the main parts of the clothing surface were established. Using the methods of acoustic emission, the experimental level of contact activity of the permeability of the liquid phase of crude oil in the structure of woven textiles at the boundary of media is established. The effect of the saturation of protective clothing by the petroleum fractions on its strength has been experimentally evaluated. The chemical compositions of the active phases were identified on the basis of experimental data. This is the contact materials of industrial pollution at oil refining facilities. Recommendations have been developed to improve the system of individual protection of man during interaction with a polluting environment taking into account chemically aggressive components
    corecore